Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Total Environ ; 912: 168844, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38029989

RESUMEN

Methanotrophic bacteria can use atmospheric methane (CH4) as a sole carbon source for the growth and production of polyhydroxyalkanoates (PHA). The development of CH4 bioconversion processes relies heavily on the selection of an efficient methanotrophic culture. This research assessed the effect of selected growth conditions, such as nitrogen sources on the enrichment of methanotrophic cultures from various environments for PHA accumulation. Nitrate-based medium favoured the culture growth and selection for PHA-producing methanotrophic cultures with Methylocystis sp. as a major genus and accumulation of up to 27 % polyhydroxybutyrate (PHB) in the biomass. Three PHB-producing cultures: enriched from waste activated sludge (AS), peat bog soil (PB) and landfill biocover soil (LB) were then tested for their ability to produce PHA copolymer at different CH4:O2 ratios. All enriched cultures were able to utilise valeric acid as a cosubstrate for the accumulation of PHA with a 3-hydroxyvaleric (3HV) fraction of 21-41 mol% depending on the inoculum source and CH4 concentration. The process performance of selected cultures was evaluated and compared to the culture of reference strain Methylocystis hirsuta DSM 18500. All mixed cultures irrespective of their inoculum source had similar levels of 3HV fraction in the PHA (38 ± 2 mol%). The highest poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) production was observed for AS culture at 10 % CH4 with an accumulation of 27 ± 3 % of dry cell weight (DCW), 3HV fraction of 39 ± 2 mol% and yield of 0.42 ± 0.02 g-PHA/g-substrate.


Asunto(s)
Ácidos Pentanoicos , Polihidroxialcanoatos , Aguas del Alcantarillado , Metano , Suelo
2.
Bioresour Technol ; 393: 130123, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38042435

RESUMEN

The objective was to investigate the impact of the bioaugmentation on chain elongation process using glycerol, lactate and lactose as substrates in an open culture fermentation. In the batch trials the highest selectivity for chain elongation product, i.e. caproate, was observed in trials inoculated with co-culture of Megasphaera elsdenii and Eubacterium limosum grown on glycerol (28.6%), and in non-bioaugmented open culture run on lactose + lactate (14.8%). The results showed that E. limosum, out of two bioaugmented strains, was able to survive in the open culture. A continuous open culture fermentation of glycerol led to caproate and 1,3-propanediol (1,3-PDO) formation, while lactate addition led to 1,3-PDO and short chain carboxylates production. Moving the process into batch mode triggered even-carbon chain elongation. Presence of E. limosum promoted odd-carbon chain elongation and valerate production. Imaging flow cytometry combined with machine learning enabled the discrimination of Eubacterium cells from other microbial strains during the process.


Asunto(s)
Caproatos , Ácido Láctico , Glicoles de Propileno , Ácidos Carboxílicos , Glicerol , Lactosa , Fermentación , Propilenglicol , Carbono
3.
Front Bioeng Biotechnol ; 10: 951583, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35957637

RESUMEN

Short- and medium-chain fatty acids (SMCFAs) derived from the acidogenic anaerobic mixed culture fermentation of acid whey obtained from a crude cheese production line and their synthetic mixture that simulates a real SMCFA-rich stream were evaluated for polyhydroxyalkanoate (PHA) production. Three individual Pseudomonas sp. strains showed different capabilities of growing and producing PHAs in the presence of a synthetic mixture of SMCFAs. Pseudomonas sp. GL06 exhibited the highest SMCFA tolerance and produced PHAs with the highest productivity (2.7 mg/L h). Based on these observations, this strain was selected for further investigations on PHA production in a fed-batch bioreactor with a SMCFA-rich stream extracted from the effluent. The results showed that PHA productivity reached up to 4.5 mg/L h at 24 h of fermentation together with the ammonium exhaustion in the growth medium. Moreover, the PHA monomeric composition varied with the bacterial strain and the type of the growth medium used. Furthermore, a differential scanning calorimetric and thermogravimetric analysis showed that a short- and medium-chain-length PHA copolymer made of 3-hydroxybutyric, -hexanoic, -octanoic, -decanoic, and -dodecanoic has promising properties. The ability of Pseudomonas sp. to produce tailored PHA copolymers together with the range of possible applications opens new perspectives in the development of PHA bioproduction as a part of an integrated valorization process of SMCFAs derived from waste streams.

4.
Sci Total Environ ; 851(Pt 1): 158171, 2022 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-35988608

RESUMEN

Waste valorisation via biological production of widely used in the industry medium chain carboxylates (MCCs) via open culture fermentation (OCF) could be a promising alternative to the commonly used anaerobic digestion. Lactate-rich waste streams are considered as valuable substrates for carboxylate chain elongation (CE), however, there are certain limitations related to the production efficiency. Acetate produced and accumulated in the acetogenesis plays an important role in CE, i.e. acetate is elongated to butyrate and then to caproate which is most popular MCC. Henceforth, it was investigated whether the ratio of lactate to acetate (L:A) affected carboxylates yields and product distribution in the lactate-based CE in OCF. The tested L:A ratios influenced carboxylates selectivity in batch trials. In the ones with lactate as the sole carbon source, propionate production was predominant but when a higher relative acetate concentration was used, the production of butyrate and CE to caproate was favored. The co-utilization of lactate and acetate in a continuous process increased the production of butyrate and caproate compared to the phase with lactate as the sole carbon source, however, controlling the relative concentration of lactate and acetate during co-utilization was not an effective strategy for increasing caproate production. 16S rRNA gene amplicon reads mapping to Caproiciproducens were the most abundant in samples collected throughout the continuous processes regardless of the L:A ratios.


Asunto(s)
Caproatos , Ácido Láctico , Acetatos , Butiratos , Carbono , Fermentación , Propionatos , ARN Ribosómico 16S
5.
Materials (Basel) ; 15(13)2022 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-35806607

RESUMEN

Polyhydroxyalkanoates (PHAs) production by Aeromonas sp. AC_01 was investigated using synthetic and waste derived short and medium chain fatty acids (SMCFAs). The obtained results revealed that the analyzed bacterial strain was able to grow and synthesize PHAs using SMCFAs. The highest PHA productivity was observed in the cultivation supplemented with a mixture of acetic acid and butyric acid (3.89 mg/L·h). Furthermore, SMCFAs-rich stream, derived from acidogenic mixed culture fermentation of acid whey, was found to be less beneficial for PHA productivity than its synthetic mixture, however the PHA production was favored by the nitrogen-limited condition. Importantly, Aeromonas sp. AC_01 was capable of synthesizing novel scl-mcl copolymers of 3-hydroxybutyrate (3HB), 3-hydroxyvalerate (3HV), 3-hydroxytridecanoate (3HtriD) and/or 3-hydroxytetradecaonate (3HTD) with high 3HB and 3HV fractions. They were identified with alterable monomers composition depending on the culture conditions used. Moreover, in-depth thermal analyses proved that they are highly resistant to thermal degradation regardless of their monomeric composition. The obtained results confirm that Aeromonas sp. AC_01 is a promising candidate for the biotechnological production of PHAs from SMCFAs with thermal properties that can be tuned together with their chemical composition by the corresponding adjustment of the cultivation process.

6.
Sci Rep ; 12(1): 7263, 2022 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-35508573

RESUMEN

The aim of this study was to evaluate an effect of short and medium chain carboxylic acids (CAs) rich stream derived from acidogenic mixed culture fermentation of acid whey on polyhydroxyalkanoates (PHAs) synthesis by Paracoccus homiensis and compare it with the impact of individual synthetic CAs. The obtained results confirmed that the analyzed bacterium is able to metabolize synthetic CAs as the only carbon sources in the growth medium with maximum PHAs production yields of 26% of cell dry mass (CDM). The replacement of the individual CAs by a CAs-rich residual stream was found to be beneficial for the Paracoccus homiensis growth. The highest biomass concentration reached about 2.5 g/L with PHAs content of 17% of CDM. The purified PHAs were identified as poly(3-hydroxybutyrate-co-3-hydroxyvalerate) by applying gas chromatography coupled with mass spectrometry, Fourier transform infrared spectroscopic spectra and UV-Vis spectra. Furthermore, a differential scanning calorimetric, thermogravimetric and water contact angle analysis proved that the extracted copolymers have useful properties. The obtained data are promising in the perspective of developing a microbial PHAs production as a part of an integrated valorization process of high CAs content waste-derived streams.


Asunto(s)
Paracoccus , Polihidroxialcanoatos , Ácidos , Ácidos Carboxílicos , Medios de Cultivo/análisis , Cromatografía de Gases y Espectrometría de Masas , Polihidroxialcanoatos/metabolismo
7.
J Hazard Mater ; 432: 128688, 2022 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-35316636

RESUMEN

The presence of micropollutants in water, wastewater and soil are a global problem due to their persistent effect on ecosystems and human health. Although there are many methods of removal of environmental pollutants, they are often ineffective for degradation of pharmaceuticals, including estrogens. In presented work we proposed fabrication of electrospun material from polyacrylonitrile/polyethersulfone (PAN/PES) as a support for laccase immobilization by covalent binding. Oxidoreductase was attached to the electrospun fibers using polydopamine as a linker and produced system was used for degradation of two estrogens: 17ß-estradiol (E2) and 17α-ethynylestradiol (EE2). It was shown that 92% of E2 and 100% of EE2 were degraded after 24 h of the process. Moreover, the effect of surfactants, metal ions and mediators on conversion efficiencies of estrogens was investigated and it was confirmed that immobilized enzyme possessed higher resistance to inhibitory agents as well as thermal and storage stability, compared to its native form. Finally, estrogenic activities of E2 and EE2 solutions decreased around 99% and 87%, respectively, after enzymatic conversion, that corresponds to significant reduction of the total organic carbon and formation of low-toxic final products of estrogens degradation.


Asunto(s)
Estrógenos , Contaminantes Químicos del Agua , Resinas Acrílicas , Ecosistema , Estradiol/metabolismo , Estrógenos/metabolismo , Etinilestradiol/metabolismo , Humanos , Lacasa/metabolismo , Polímeros , Sulfonas , Contaminantes Químicos del Agua/química
8.
Sci Total Environ ; 802: 149885, 2022 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-34474295

RESUMEN

Chain elongation is an anaerobic biotechnological process that converts short chain carboxylates and an electron donor (e.g. ethanol, lactate) into more valuable medium chain carboxylates. Caproate production in lactate-based chain elongation is gaining popularity, however, the relation between lactate (electron donor) and acetate (electron acceptor) has not yet been fully elucidated. Herein, for the first time, the effect of an external acetate on the lactate-based chain elongation in a continuously-fed bioreactor was tested to verify how the external acetate would affect the product spectrum, gas production, as well as stability and efficiency of carboxylates production. Periodic fluctuations in caproate production were observed in bioreactor continuously fed with lactate as a sole carbon source due to the lack of an electron acceptor (acetate) and low chain elongation performance. The recovery of stable caproate production (68.9 ± 2.2 mmol C/L/d), total lactate consumption, and high hydrogen co-production (748 ± 76 mLH2/d) was observed as an effect of the addition of an external acetate. The lactate conversion with the external acetate in the second bioreactor ensured stable and dominant caproate production from the beginning of the process. Moreover, despite the continuous lactate overloading in the process with external acetate, stable caproate production was achieved (71.7 ± 2.4 mmol C/L/d) and previously unobserved hydrogen production occurred (213 ± 30 mLH2/d). Thus, external electron acceptor addition (i.e. acetate) was proposed as an effective method for stable lactate-based caproate production. Microbiological analysis showed the dominance of microbes closely related to Ruminococcaceae bacterium CPB6 and Acinetobacter throughout the process. Co-occurrence networks based on taxon abundances and process parameters revealed microbial sub-networks responding to lactate concentrations.


Asunto(s)
Reactores Biológicos , Ácido Láctico , Acetatos , Fermentación , Hidrógeno
9.
Biotechnol Adv ; 53: 107861, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34710553

RESUMEN

Methane is an abundant and low-cost gas with high global warming potential and its use as a feedstock can help mitigate climate change. Variety of valuable products can be produced from methane by methanotrophs in gas fermentation processes. By using methane as a sole carbon source, methanotrophic bacteria can produce bioplastics, biofuels, feed additives, ectoine and variety of other high-value chemical compounds. A lot of studies have been conducted through the years for natural methanotrophs and engineered strains as well as methanotrophic consortia. These have focused on increasing yields of native products as well as proof of concept for the synthesis of new range of chemicals by metabolic engineering. This review shows trends in the research on key methanotrophic bioproducts since 2015. Despite certain limitations of the known production strategies that makes commercialization of methane-based products challenging, there is currently much attention placed on the promising further development.


Asunto(s)
Biotecnología , Metano , Biocombustibles , Carbono , Ingeniería Metabólica
10.
Polymers (Basel) ; 13(3)2021 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-33498279

RESUMEN

Waste of industrial origin produced from synthetic materials are a serious threat to the natural environment. The ending resources of fossil raw materials and increasingly restrictive legal standards for the management of plastic waste have led to research on the use of biopolymers, which, due to their properties, may be an ecological alternative to currently used petrochemical polymers. Polyhydroxyalkanoates (PHAs) have gained much attention in recent years as the next generation of environmentally friendly materials. Currently, a lot of research is being done to reduce the costs of the biological process of PHA synthesis, which is the main factor limiting the production of PHAs on the industrial scale. The volatile fatty acids (VFAs) produced by anaerobic digestion from organic industrial and food waste, and various types of wastewater could be suitable carbon sources for PHA production. Thus, reusing the organic waste, while reducing the future fossil fuel, originated from plastic waste. PHA production from VFAs seem to be a good approach since VFAs composition determines the constituents of PHAs polymer and is of great influence on its properties. In order to reduce the overall costs of PHA production to a more reasonable level, it will be necessary to design a bioprocess that maximizes VFAs production, which will be beneficial for the PHA synthesis. Additionally, a very important factor that affects the profitable production of PHAs from VFAs is the selection of a microbial producer that will effectively synthesize the desired bioproduct. PHA production from VFAs has gained significant interest since VFAs composition determines the constituents of PHA polymer. Thus far, the conversion of VFAs into PHAs using pure bacterial cultures has received little attention, and the majority of studies have used mixed microbial communities for this purpose. This review discusses the current state of knowledge on PHAs synthesized by microorganisms cultured on VFAs.

11.
Bioresour Technol ; 318: 123895, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32739091

RESUMEN

The objective of the study was to valorize waste stream for the co-production of hydrogen and caproate via open culture fermentation (OCF). Batch studies confirmed that the use of sugar (lactose) together with carboxylates (lactate and acetate) may allow mutual coexistence of chain elongation and dark fermentation processes. During the continuous test in an upflow anaerobic sludge blanket reactor (UASB), acid whey was used as a model feedstock due to a high concentration of lactose and lactate. Shortening hydraulic retention time (HRT) to 2.5 days allowed the co-production of hydrogen and caproate with almost complete methanogenesis inhibition. During the 50 days period, the average hydrogen and caproate production were 1.78 ± 0.75 LH2/L/d and 133.4 ± 17.9 mmol C/L/d, respectively.


Asunto(s)
Reactores Biológicos , Hidrógeno , Anaerobiosis , Caproatos , Fermentación , Aguas del Alcantarillado , Eliminación de Residuos Líquidos
12.
Sci Total Environ ; 728: 138814, 2020 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-32361117

RESUMEN

The objective of this study was to investigate the effect of substrate composition on chain elongation pathways and on shaping reactor microbiome during open culture fermentation (OCF). The process was performed in a continuous mode in an upflow anaerobic sludge blanket (UASB) reactor fed with either fresh acid whey (AW) or AW at controlled stage of prefermentation (with controlled content of electron donors). Dosing AW with an increasing ethanol loading rate led to ethanol oxidation and short chain carboxylic acids (SCCAs) generation. Change of the feedstock composition (higher lactate and lactose content and ethanol cut off) shifted the process outcome towards medium chain carboxylic acids (MCCAs) production, with caproate as the main product. The MCCAs production rate has grown from 0.7 ± 0 to 4.12 ± 1 g/L/day (38.3 ± 5 to 212.6 ± 60 mmol C/L/day) and reached specificity of 48 ± 18% mol C. The differentiation between microbiome samples confirmed the reactor microbiome shaped according to the feed composition. The only known caproic acid producers were represented by Caproiciproducens ssp., that reached a relative OTU abundance between 3 and 7%. The developed method enables to substitute the use of fossil resources with products from the OCF of waste and wastewater. Thus, it contributes to reduce the carbon footprint and enhance the sustainability of the chemical industry.


Asunto(s)
Reactores Biológicos , Ácidos Carboxílicos , Etanol , Fermentación , Aguas del Alcantarillado
13.
Environ Sci Technol ; 54(9): 5864-5873, 2020 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-32267683

RESUMEN

Chain elongation is a process that produces medium chain fatty acids such as caproic acid, which is one of the promising products of the carboxylate platform. This study analyzed the impact of bioaugmentation of heat-treated anaerobic digester sludge with Clostridium kluyveri (AS + Ck) on caproic acid production from a mixed substrate (lactose, lactate, acetate, and ethanol). It was compared with processes initiated with non-augmented heat-treated anaerobic digester sludge (AS) and mono-culture of C. kluyveri (Ck). Moreover, stability of the chain elongation process was evaluated by performing repeated batch experiments. All bacterial cultures demonstrated efficient caproate production in the first batch cycle. After 18 days, caproate concentration reached 9.06 ± 0.43, 7.86 ± 0.38, and 7.67 ± 0.37 g/L for AS, Ck, and AS + Ck cultures, respectively. In the second cycle, AS microbiome was enriched toward caproate production and showed the highest caproate concentration of 11.44 ± 0.47 g/L. On the other hand, bioaugmented culture showed the lowest caproate production in the second cycle (4.10 ± 0.30 g/L). Microbiome analysis in both AS and AS + Ck culture samples indicated strong enrichment toward the anaerobic order of Clostridia. Strains belonging to genera Sporanaerobacter, Paraclostridium, Haloimpatiens, Clostridium, and Bacillus were dominating in the bioreactors.


Asunto(s)
Clostridium kluyveri , Reactores Biológicos , Caproatos , Carbono , Clostridium , Fermentación
14.
Bioresour Technol ; 279: 74-83, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-30711755

RESUMEN

The objective of this study was to investigate the potential of supplementing ethanol and lactic acid as electron donors in reverse ß-oxidation for short chain carboxylic acids chain elongation during anaerobic fermentation of acid whey. Best results were achieved when lactic acid was added at concentration of 300 mM. It resulted in medium chain carboxylic acids (MCCAs) concentration of 5.0 g/L. In the trials with ethanol addition, the overall yield was 20% lower. Subsequently liquid-liquid extraction with ionic liquids (ILs) was investigated as a potential purification method of caproic acid. The most promising, with respect to recovery of caproic acid, was piperazinium IL [C1C1C10Ppz][NTF2], however, the selectivity was only 0.39. Less effective [C1C1C6Ppz][NTF2] recovered 85.9% of caproic acid while reaching a higher selectivity of 0.53. Technoeconomic model revealed that to meet the conservative value of $2.25 per kg of caproic acid, the downstream processing should not exceed $0.65 per kg.


Asunto(s)
Caproatos/metabolismo , Suero Lácteo/metabolismo , Reactores Biológicos , Electrones , Etanol/metabolismo , Fermentación
15.
Trends Biotechnol ; 36(8): 747-750, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29395343

RESUMEN

Microorganisms are responsible for biochemical cycles and therefore play essential roles in the environment. By using omics approaches and network analysis to understand the interaction and cooperation within mixed microbial communities, it would be possible to engineer microbiomes in fermentation and digestion reactors to convert organic waste into valuable products.


Asunto(s)
Reactores Biológicos/microbiología , Eliminación de Residuos Sanitarios/métodos , Microbiota , Compuestos Orgánicos/metabolismo , Biotransformación , Fermentación
16.
Bioresour Technol ; 249: 737-743, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-29100188

RESUMEN

The influence of different parts of corn stover on lignin extraction was investigated. Five kinds of lignin were isolated by the high boiling point solvent extraction from the whole corn stover and four different parts including leaf, husk, bark and pith. The optimal condition was obtained: 6.25 g/L NaOH, 140 °C, 1 h and 60% (v/v) 1,4-butanediol. The extracted lignins were then characterized. FT-IR analysis revealed that all of the lignins were typically herbaceous. The lignin extracted from husk contained more S unit. Gel permeation chromatography analysis showed that it was necessary to separate corn stover into different parts to obtain low polydispersity lignin. The SEM and FT-IR analysis proved that the lignin dissolution was related to the tightness structure presenting a positive correlation with hydrogen bond index.


Asunto(s)
Lignina , Zea mays , Hidrólisis , Solventes , Espectroscopía Infrarroja por Transformada de Fourier
17.
Sci Rep ; 6: 26067, 2016 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-27181523

RESUMEN

Conversion of carbohydrate into 5-hydroxymethylfurfural (5- HMF), a versatile, key renewable platform compound is regarded as an important transformation in biomass-derived carbohydrate chemistry. A variety of ILs, not only acidic but also alkaline ILs, were synthesized and used as catalyst in the production of 5-HMF from disaccharide. Several factors including reaction temperature, IL dosage, solvent and reaction time,were found to influence the yield of 5-HMF from cellobiose. Of the ILs tested, hydroxy-functionalized ionic liquid (IL), 1-hydroxyethyl-3-methylimidazolium tetrafluoroborate ([AEMIM]BF4) showed the highest catalytic activity and selectivity. 5-HMF yield of 68.71% from sucrose was obtained after 6 hrs at 160 °C. At the same condition with cellobiose as substrate, 5-HMF yield was 24.73%. In addition, 5-HMF also exhibited good stablity in this reaction system. Moreover, a kinetic analysis was carried out in both acidic and alkaline IL-catalyzed system, suggesting main side reaction in the conversion of fructose catalyzed by acidic and alkaline IL was polymerization of fructose and 5-HMF degradation, respectively.

18.
Bioresour Technol ; 190: 274-80, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25965252

RESUMEN

Mixed culture fermentation consists of stable microbial population hence waste could be potentially used as a substrates. The aim of the work was to investigate the impact of pH and retention time on the anaerobic mixed culture fermentation. Trials at different pH (4-12) in unbuffered systems were conducted for 5, 10 and 15days. The highest VFAs concentration was achieved after 15days at pH 10 (0.62g/gVSadded), promising results were also achieved for pH 11 (0.54g/gVSadded). For pH 4 and short retention time propionic acid was the major product instead of acetic acid. For batches run at 15days (besides pH 6) caproic acid presence was noticed whereas at pH 11 occurrence of succinic was quantified. Significant correlation between operational factors and fermentation's effluents was proved. Throughout changing simple operating parameters one could design process to produce desirable concentration and composition of VFAs.


Asunto(s)
Bacterias Anaerobias/química , Bacterias Anaerobias/metabolismo , Reactores Biológicos/microbiología , Técnicas de Cocultivo/métodos , Ácidos Grasos Volátiles/biosíntesis , Ácidos Grasos Volátiles/química , Medios de Cultivo/química , Ácidos Grasos Volátiles/aislamiento & purificación , Fermentación , Concentración de Iones de Hidrógeno , Tasa de Depuración Metabólica , Consorcios Microbianos/fisiología
19.
Bioresour Technol ; 176: 175-80, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25461000

RESUMEN

To investigate pretreatment demand for different parts of biomass, cotton stalk was separated into stem, branch and boll shell, which were treated by liquid hot water pretreatment (LHWP) with severity from 2.77 to 4.42. Based on weight loss (WL, w/w) mainly caused by hemicellulose removal, it was found that boll shell (WL, 46.93%) was more sensitive to LHWP than stem (WL, 38.85%). Although ethanol yield of 18.3, 16.27 and 21.08g/100g was achieved from stem, branch and boll shell with pretreatment severity at 4.42, ratio of ethanol yield to pretreatment energy input for particular parts was different. For boll shell and branch, the maximum ratio of ethanol yield to energy input were 1.37 and 1.33g ethanolkJ(-1) with severity at 4.34, while it was 1.20 for stem at 3.66. This indicates that different pretreatment demands for different parts of plants should be considered in order to save pretreatment energy input.


Asunto(s)
Biocombustibles , Etanol/metabolismo , Gossypium/química , Calor , Agua , Biotecnología/métodos , Etanol/química , Fermentación
20.
Bioresour Technol ; 162: 358-64, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24768890

RESUMEN

Ionic liquid (IL) has been widely investigated in 5-HMF production from biomass. However, most of studies employed IL as reaction solvent which requires a large amount of IL. In the present study, IL was utilized as catalyst in the conversion of microcrystalline cellulose (MCC) to 5-HMF under microwave irradiation (MI) in N,N-dimethylacetamide (DMAc) containing LiCl. 1,1,3,3-tetramethylguanidine (TMG)-based ILs, including 1,1,3,3-tetramethylguanidine tetrafluoroborate ([TMG][BF4]) and 1,1,3,3-tetramethylguanidine lactate ([TMG]L) which were commonly used in the absorption of SO2 and CO2 from flue gas, were synthesized and applied in the conversion of MCC to 5-HMF for the first time. Of the catalysts employed, [TMG]BF4 showed high catalytic activity in 5-HMF production from MCC. The condition including the ratio of IL to MCC, temperature and time for MCC conversion was optimized using Central Composite Design (CCD) and Response Surface Methodology (RSM). The highest 5-HMF yield of 28.63% was achieved with the optimal condition.


Asunto(s)
Celulosa/química , Furaldehído/análogos & derivados , Líquidos Iónicos/química , Microondas , Análisis de Varianza , Catálisis , Furaldehído/química , Guanidinas/química , Temperatura , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...