Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Molecules ; 28(12)2023 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-37375408

RESUMEN

Four examples of N,N-bis(aryl)butane-2,3-diimine-nickel(II) bromide complexes, [ArN=C(Me)-C(Me)=NAr]NiBr2 (where Ar = 2-(C5H9)-4,6-(CHPh2)2C6H2 (Ni1), Ar = 2-(C6H11)-4,6-(CHPh2)2C6H2 (Ni2), 2-(C8H15)-4,6-(CHPh2)2C6H2 (Ni3) and 2-(C12H23)-4,6-(CHPh2)2C6H2 (Ni4)), disparate in the ring size of the ortho-cycloalkyl substituents, were prepared using a straightforward one-pot synthetic method. The molecular structures of Ni2 and Ni4 highlight the variation in the steric hindrance of the ortho-cyclohexyl and -cyclododecyl rings exerted on the nickel center, respectively. By employing EtAlCl2, Et2AlCl or MAO as activators, Ni1-Ni4 displayed moderate to high activity as catalysts for ethylene polymerization, with levels falling in the order Ni2 (cyclohexyl) > Ni1 (cyclopentyl) > Ni4 (cyclododecyl) > Ni3 (cyclooctyl). Notably, cyclohexyl-containing Ni2/MAO reached a peak level of 13.2 × 106 g(PE) of (mol of Ni)-1 h-1 at 40 °C, yielding high-molecular-weight (ca. 1 million g mol-1) and highly branched polyethylene elastomers with generally narrow dispersity. The analysis of polyethylenes with 13C NMR spectroscopy revealed branching density between 73 and 104 per 1000 carbon atoms, with the run temperature and the nature of the aluminum activator being influential; selectivity for short-chain methyl branches (81.8% (EtAlCl2); 81.1% (Et2AlCl); 82.9% (MAO)) was a notable feature. The mechanical properties of these polyethylene samples measured at either 30 °C or 60 °C were also evaluated and confirmed that crystallinity (Xc) and molecular weight (Mw) were the main factors affecting tensile strength and strain at break (εb = 353-861%). In addition, the stress-strain recovery tests indicated that these polyethylenes possessed good elastic recovery (47.4-71.2%), properties that align with thermoplastic elastomers (TPEs).

2.
Dalton Trans ; 49(15): 4774-4784, 2020 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-32211662

RESUMEN

A one-pot template strategy has been utilized to synthesize sterically enhanced bis(imino)cyclohepta[b]pyridine-cobalt(ii) chlorides, [2-{(Ar)N[double bond, length as m-dash]CMe}-9-{N(Ar)}C10H10N]CoCl2 (Ar = 2-(C5H9)-4,6-(CHPh2)2C6H2Co1, 2-(C6H11)-4,6-(CHPh2)2C6H2Co2, 2-(C8H15)-4,6-(CHPh2)2C6H2Co3, 2-(C12H23)-4,6-(CHPh2)2C6H2Co4, 2,6-(C5H9)2-4-(CHPh2)C6H2Co5). All five complexes have been characterized by a combination of FT-IR spectroscopy, elemental analysis and single crystal X-ray diffraction. The molecular structures of Co1, Co3 and Co5 highlight the substantial steric hindrance imparted by the 2-cycloalkyl-6-benzhydryl or 2,6-dicyclopentyl ortho-substitution pattern; distorted square pyramidal geometries are exhibited in each case. On activation with methylaluminoxane (MAO) or modified methylaluminoxane (MMAO), all the complexes (apart from Co4/MAO) were active ethylene polymerization catalysts (up to 3.70 × 106 g PE per mol (Co) per h for Co5/MMAO), operating effectively at temperatures between 50 °C and 60 °C, producing polyethylenes with high molecular weights (up to 589.5 kg mol-1 for Co3/MAO). Furthermore, all polymers were highly linear (Tm > 130 °C) with narrow dispersities (Mw/Mn range: 2.0-3.0). The coexistence of two chain termination pathways, ß-H elimination and transfer to aluminum, has been demonstrated using 13C/1H NMR spectroscopy.

3.
Dalton Trans ; 49(1): 136-146, 2020 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-31793578

RESUMEN

The syntheses of six bis(imino)-5,6,7,8-tetrahydrocycloheptapyridine-iron(ii) chloride complexes, [2-{(Ar)NCMe}-9-{N(Ar)}C10H10N]FeCl2 (Ar = 2-(C5H9)-6-MeC6H3Fe1, 2-(C6H11)-6-MeC6H3Fe2, 2-(C8H15)-6-MeC6H3Fe3, 2-(C5H9)-4,6-Me2C6H2Fe4, 2-(C6H11)-4,6-Me2C6H2Fe5, 2-(C8H15)-4,6-Me2C6H3Fe6), are reported in which the ring size of the ortho-cycloalkyl group has been varied as has the type of para-substituent. The molecular structures of Fe3 and Fe6 reveal square pyramidal geometries at iron while the ortho-cyclooctyl rings adopt boat-chair conformations. On treatment with either methylaluminoxane (MAO) or modified methylaluminoxane (MMAO), all six complexes showed optimal activities at 80 °C [up to 1.9 × 107 g of PE per mol Fe per h for Fe5/MMAO] for ethylene polymerization forming linear polyethylene (Tm's > 126 °C). Notably, the catalytic activities showed a marked correlation with the ring size of the ortho-cycloalkyl substituent: cyclohexyl (Fe2 and Fe5) > cyclooctyl (Fe3 and Fe6) > cyclopentyl (Fe1 and Fe4) for either para-substituent, H or Me. Furthermore, this family of iron catalysts exhibited remarkable thermostability by remaining highly active even at temperatures as high as 100 °C (1.1 × 107 g of PE per mol Fe per h); the wide variation in polymer molecular weights (Mw: 2.4-166 kg mol-1), influenced through choice of precatalyst and co-catalyst as well as by temperature and pressure, further highlights the versatility of these catalysts.

4.
Molecules ; 24(6)2019 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-30934627

RESUMEN

Six examples of 2-(1-arylimino)ethyl-9-arylimino-5,6,7,8-tetrahydrocycloheptapyridine-cobalt(II) chloride complexes, [2-(1-ArN)C2H3-9-ArN-5,6,7,8-C5H8C5H3N]CoCl2, (Ar = 2-(C5H9)-6-MeC6H3 Co1, 2-(C6H11)-6-MeC6H3 Co2, 2-(C8H15)-6-MeC6H3 Co3, 2-(C5H9)-4,6-Me2C6H2 Co4, 2-(C6H11)-4,6-Me2C6H2 Co5, and 2-(C8H15)-4,6-Me2C6H2 Co6), were synthesized by the direct reaction of the corresponding ortho-cycloalkyl substituted carbocyclic-fused bis(arylimino)pyridines (L1⁻L6) and cobalt(II) chloride in ethanol with good yields. All the synthesized ligands (L1⁻L6) and their corresponding cobalt complexes (Co1⁻Co6) were fully characterized by FT-IR, ¹H/13C-NMR spectroscopy and elemental analysis. The crystal structure of Co2 and Co3 revealed that the ring puckering of both the ortho-cyclohexyl/cyclooctyl substituents and the one pyridine-fused seven-membered ring; a square-based pyramidal geometry is conferred around the metal center. On treatment with either methylaluminoxane (MAO) or modified methylaluminoxane (MMAO), all the six complexes showed high activities (up to 4.09 × 106 g of PE mol-1 (Co) h-1) toward ethylene polymerization at temperatures between 20 °C and 70 °C with the catalytic activities correlating with the type of ortho-cycloalkyl substituent: Cyclopentyl (Co1 and Co4) > cyclohexyl (Co2 and Co5) > cyclooctyl (Co3 and Co6) for either R = H or Me and afforded strictly linear polyethylene (Tm > 130 °C). The narrow unimodal distributions of the resulting polymers are consistent with single-site active species for the precatalyst. Furthermore, compared to the previously reported cobalt analogues, the titled precatalysts exhibited good thermo-stability (up to 70 °C) and possessed longer lifetime along with a higher molecular weight of PE (Mw: 9.2~25.3 kg mol-1).


Asunto(s)
Cobalto/química , Polietilenos/química , Termodinámica , Catálisis , Técnicas de Química Sintética , Ligandos , Espectroscopía de Resonancia Magnética , Modelos Moleculares , Conformación Molecular , Estructura Molecular , Polimerizacion , Relación Estructura-Actividad
5.
Dalton Trans ; 46(45): 15684-15697, 2017 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-29067369

RESUMEN

A family of six unsymmetrical N,N'-diiminoacenaphthene-nickel(ii) bromide complexes, [1-{2,6-(Ph2CH)2-4-MeC6H2N}-2-(ArN)C2C10H6]NiBr2 (Ar = 2-(C6H11)-6-MeC6H2Ni1, 2-(C5H9)-6-MeC6H2Ni2, 2-(C8H15)-6-MeC6H2Ni3, 2-(C6H11)-4,6-Me2C6H2Ni4, 2-(C5H9)-4,6-Me2C6H2Ni5, 2-(C8H15)-4,6-Me2C6H2Ni6), each bearing one ring-size variable 4-R-2-methyl-6-cycloalkyl-substituted N-aryl group and one N'-4-methyl-2,6-dibenzhydrylphenyl group, have been prepared and fully characterized. The molecular structures of Ni1, Ni2, Ni3 and Ni5 reveal distorted tetrahedral geometries with different degrees of steric protection imparted by the two inequivalent N-aryl groups. On activation with either EASC or MMAO, all the precatalysts are highly active (up to 17.45 × 106 g PE mol-1 (Ni) h-1) for ethylene polymerization at 20-50 °C with their activities correlating with the type of cycloalkyl ortho-substituent: cyclooctyl (Ni6, Ni3) > the cyclopentyl (Ni5, Ni2) > cyclohexyl (Ni4, Ni1) for either R = H or Me. Moderately branched to hyperbranched polyethylenes (Tm's as low as 44.2 °C) can be obtained with molecular weights in the range 2.14-6.68 × 105 g mol-1 with the branching content enhanced by the temperature of the polymerization. Dynamic mechanical analysis (DMA) and monotonic tensile stress-strain tests have been employed on the polyethylene samples and reveal the more branched materials to show good elastic recovery properties (up to 75.5%).

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA