Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cell Death Dis ; 14(3): 231, 2023 03 31.
Artículo en Inglés | MEDLINE | ID: mdl-37002195

RESUMEN

The ubiquitin proteasomal system is a critical regulator of muscle physiology, and impaired UPS is key in many muscle pathologies. Yet, little is known about the function of deubiquitinating enzymes (DUBs) in the muscle cell context. We performed a genetic screen to identify DUBs as potential regulators of muscle cell differentiation. Surprisingly, we observed that the depletion of ubiquitin-specific protease 18 (USP18) affected the differentiation of muscle cells. USP18 depletion first stimulated differentiation initiation. Later, during differentiation, the absence of USP18 expression abrogated myotube maintenance. USP18 enzymatic function typically attenuates the immune response by removing interferon-stimulated gene 15 (ISG15) from protein substrates. However, in muscle cells, we found that USP18, predominantly nuclear, regulates differentiation independent of ISG15 and the ISG response. Exploring the pattern of RNA expression profiles and protein networks whose levels depend on USP18 expression, we found that differentiation initiation was concomitant with reduced expression of the cell-cycle gene network and altered expression of myogenic transcription (co) factors. We show that USP18 depletion altered the calcium channel gene network, resulting in reduced calcium flux in myotubes. Additionally, we show that reduced expression of sarcomeric proteins in the USP18 proteome was consistent with reduced contractile force in an engineered muscle model. Our results revealed nuclear USP18 as a critical regulator of differentiation initiation and maintenance, independent of ISG15 and its role in the ISG response.


Asunto(s)
Citocinas , Ubiquitinas , Citocinas/metabolismo , Ubiquitinas/metabolismo , Interferones , Diferenciación Celular/genética , Músculos/metabolismo , Ubiquitina Tiolesterasa/genética , Ubiquitina Tiolesterasa/metabolismo
2.
J Cachexia Sarcopenia Muscle ; 13(1): 532-543, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34866353

RESUMEN

BACKGROUND: Degeneration of shoulder muscle tissues often result in tearing, causing pain, disability and loss of independence. Differential muscle involvement patterns have been reported in tears of shoulder muscles, yet the molecules involved in this pathology are poorly understood. The spatial distribution of biomolecules across the affected tissue can be accurately obtained with matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI). The goal of this pilot study was to decipher the metabolic landscape across shoulder muscle tissues and to identify signatures of degenerated muscles in chronic conditions. METHODS: Paired biopsies of two rotator cuff muscles, torn infraspinatus and intact teres minor, together with an intact shoulder muscle, the deltoid, were collected during an open tendon transfer surgery. Five patients, average age 65.2 ± 3.8 years, were selected for spatial metabolic profiling using high-spatial resolution (MALDI-TOF) and high-mass resolution (MALDI-FTICR) MSI in negative or positive ion mode. Metabolic signatures were identified using data-driven analysis. Verifications of spatial localization for selected metabolic signatures were carried out using antibody immunohistology. RESULTS: Data-driven analysis revealed major metabolic differences between intact and degenerated regions across all muscles. The area of degenerated regions, encompassed of fat, inflammation and fibrosis, significantly increased in both rotator cuff muscles, teres minor (27.9%) and infraspinatus (22.8%), compared with the deltoid (8.7%). The intact regions were characterized by 49 features, among which lipids were recognized. Several of the identified lipids were specifically enriched in certain myofiber types. Degenerated regions were specifically marked by the presence of 37 features. Heme was the most abundant metabolite in degenerated regions, whereas Heme oxygenase-1 (HO-1), which catabolizes heme, was found in intact regions. Higher HO-1 levels correlated with lower heme accumulation. CONCLUSIONS: Degenerated regions are distinguished from intact regions by their metabolome profile. A muscle-specific metabolome profile was not identified. The area of tissue degeneration significantly differs between the three examined muscles. Higher HO-1 levels in intact regions concurred with lower heme levels in degenerated regions. Moreover, HO-1 levels discriminated between dysfunctional and functional rotator cuff muscles. Additionally, the enrichment of specific lipids in certain myofiber types suggests that lipid metabolism differs between myofiber types. The signature metabolites can open options to develop personalized treatments for chronic shoulder muscles degeneration.


Asunto(s)
Lesiones del Manguito de los Rotadores , Anciano , Humanos , Persona de Mediana Edad , Músculo Esquelético/patología , Proyectos Piloto , Manguito de los Rotadores/patología , Lesiones del Manguito de los Rotadores/patología , Hombro
4.
Br J Cancer ; 124(4): 817-830, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33214684

RESUMEN

BACKGROUND: Interferon (IFN) signalling pathways, a key element of the innate immune response, contribute to resistance to conventional chemotherapy, radiotherapy, and immunotherapy, and are often deregulated in cancer. The deubiquitylating enzyme USP18 is a major negative regulator of the IFN signalling cascade and is the predominant human protease that cleaves ISG15, a ubiquitin-like protein tightly regulated in the context of innate immunity, from its modified substrate proteins in vivo. METHODS: In this study, using advanced proteomic techniques, we have significantly expanded the USP18-dependent ISGylome and proteome in a chronic myeloid leukaemia (CML)-derived cell line. USP18-dependent effects were explored further in CML and colorectal carcinoma cellular models. RESULTS: Novel ISGylation targets were characterised that modulate the sensing of innate ligands, antigen presentation and secretion of cytokines. Consequently, CML USP18-deficient cells are more antigenic, driving increased activation of cytotoxic T lymphocytes (CTLs) and are more susceptible to irradiation. CONCLUSIONS: Our results provide strong evidence for USP18 in regulating antigenicity and radiosensitivity, highlighting its potential as a cancer target.


Asunto(s)
Neoplasias Colorrectales/enzimología , Neoplasias Colorrectales/inmunología , Citocinas/metabolismo , Leucemia Mielógena Crónica BCR-ABL Positiva/enzimología , Leucemia Mielógena Crónica BCR-ABL Positiva/inmunología , Ubiquitina Tiolesterasa/metabolismo , Ubiquitinas/metabolismo , Variación Antigénica , Línea Celular Tumoral , Neoplasias Colorrectales/radioterapia , Técnicas de Inactivación de Genes , Células HCT116 , Humanos , Leucemia Mielógena Crónica BCR-ABL Positiva/radioterapia , Tolerancia a Radiación/genética , Tolerancia a Radiación/inmunología , Ubiquitina Tiolesterasa/deficiencia , Ubiquitina Tiolesterasa/genética
5.
Sci Rep ; 10(1): 17621, 2020 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-33077830

RESUMEN

Muscle wasting and atrophy are regulated by multiple molecular processes, including mRNA processing. Reduced levels of the polyadenylation binding protein nucleus 1 (PABPN1), a multifactorial regulator of mRNA processing, cause muscle atrophy. A proteomic study in muscles with reduced PABPN1 levels suggested dysregulation of sarcomeric and cytoskeletal proteins. Here we investigated the hypothesis that reduced PABPN1 levels lead to an aberrant organization of the cytoskeleton. MURC, a plasma membrane-associated protein, was found to be more abundant in muscles with reduced PABPN1 levels, and it was found to be expressed at regions showing regeneration. A polarized cytoskeletal organization is typical for muscle cells, but muscle cells with reduced PABPN1 levels (named as shPAB) were characterized by a disorganized cytoskeleton that lacked polarization. Moreover, cell mechanical features and myogenic differentiation were significantly reduced in shPAB cells. Importantly, restoring cytoskeletal stability, by actin overexpression, was beneficial for myogenesis, expression of sarcomeric proteins and proper localization of MURC in shPAB cell cultures and in shPAB muscle bundle. We suggest that poor cytoskeletal mechanical features are caused by altered expression levels of cytoskeletal proteins and contribute to muscle wasting and atrophy.


Asunto(s)
Citoesqueleto/metabolismo , Atrofia Muscular/metabolismo , Proteína I de Unión a Poli(A)/metabolismo , Actinas/metabolismo , Línea Celular , Humanos , Desarrollo de Músculos/fisiología , Músculo Esquelético/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...