Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Front Cell Infect Microbiol ; 14: 1443719, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39224705

RESUMEN

Mycobacterium abscessus (Mab) is an opportunistic nontuberculous mycobacterium responsible of difficult-to-treat pulmonary infections in vulnerable patients, such as those suffering from Cystic Fibrosis (CF), where it represents a major cause of morbidity and mortality. Additionally, due to the intrinsic extensive antimicrobial resistance spectrum displayed by this species and the side effects reported for some available antibiotics, the therapeutic management of such infections remains extremely difficult. In the present study, we show that phosphatidylserine liposomes (PS-L) enhance intracellular mycobacterial killing of Mab infected human macrophages with functional or pharmacologically inhibited cystic fibrosis conductance regulator (CFTR), by a mechanism involving phagosome acidification and reactive oxygen species (ROS) production. Additionally, PS-L significantly reduce proinflammatory response of Mab infected macrophages in terms of NF-kB activation and TNF-α production, irrespective of CFTR inhibition. Altogether, these results represent the proof of concept for a possible future development of PS-L as a therapeutic strategy against difficult-to-treat Mab infection.


Asunto(s)
Liposomas , Macrófagos , Infecciones por Mycobacterium no Tuberculosas , Mycobacterium abscessus , Fagosomas , Fosfatidilserinas , Especies Reactivas de Oxígeno , Humanos , Mycobacterium abscessus/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Liposomas/metabolismo , Macrófagos/microbiología , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Macrófagos/inmunología , Fagosomas/microbiología , Fagosomas/metabolismo , Fosfatidilserinas/metabolismo , Infecciones por Mycobacterium no Tuberculosas/microbiología , Factor de Necrosis Tumoral alfa/metabolismo , Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , FN-kappa B/metabolismo , Fibrosis Quística/microbiología
2.
Biomolecules ; 13(6)2023 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-37371504

RESUMEN

Mycobacterium abscessus (Mabs) is a dangerous non-tubercular mycobacterium responsible for severe pulmonary infections in immunologically vulnerable patients, due to its wide resistance to many different antibiotics which make its therapeutic management extremely difficult. Drug nanocarriers as liposomes may represent a promising delivery strategy against pulmonary Mabs infection, due to the possibility to be aerosolically administrated and to tune their properties in order to increase nebulization resistance and retainment of encapsulated drug. In fact, liposome surface can be modified by decoration with mucoadhesive polymers to enhance its stability, mucus penetration and prolong its residence time in the lung. The aim of this work is to employ Chitosan or ε-poly-L-lysine decoration for improving the properties of a novel liposomes composed by hydrogenated phosphatidyl-choline from soybean (HSPC) and anionic 1,2-Dipalmitoyl-sn-glycero-3-phosphorylglycerol sodium salt (DPPG) able to entrap Rifampicin. A deep physicochemical characterization of polymer-decorated liposomes shows that both polymers improve mucoadhesion without affecting liposome features and Rifampicin entrapment efficiency. Therapeutic activity on Mabs-infected macrophages demonstrates an effective antibacterial effect of ε-poly-L-lysine liposomes with respect to chitosan-decorated ones. Altogether, these results suggest a possible use of ε-PLL liposomes to improve antibiotic delivery in the lung.


Asunto(s)
Quitosano , Mycobacterium abscessus , Humanos , Liposomas/química , Rifampin/farmacología , Rifampin/uso terapéutico , Polilisina , Quitosano/química , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Polímeros
3.
Front Immunol ; 13: 830788, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35663973

RESUMEN

A strategy adopted to combat human immunodeficiency virus type-1 (HIV-1) infection is based on interfering with virus entry into target cells. In this study, we found that phosphatidylcholine (PC) liposomes reduced the expression of the CD4 receptor in human primary type-1 macrophages but not in CD4+ T cells. The down-regulation was specific to CD4, as any effect was not observed in CCR5 membrane expression. Moreover, the reduction of membrane CD4 expression required the Ca2+-independent protein kinase C (PKC), which in turn mediated serine phosphorylation in the intracytoplasmic tail of the CD4 receptor. Serine phosphorylation of CD4 was also associated with its internalization and degradation in acidic compartments. Finally, the observed CD4 downregulation induced by PC liposomes in human primary macrophages reduced the entry of both single-cycle replication and replication competent R5 tropic HIV-1. Altogether, these results show that PC liposomes reduce HIV entry in human macrophages and may impact HIV pathogenesis by lowering the viral reservoir.


Asunto(s)
Infecciones por VIH , VIH-1 , Antígenos CD4/metabolismo , Linfocitos T CD4-Positivos/metabolismo , VIH-1/fisiología , Humanos , Liposomas , Macrófagos/metabolismo , Fosfatidilcolinas/farmacología , Serina
4.
Front Immunol ; 13: 835417, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35237274

RESUMEN

Klebsiella pneumoniae is an opportunistic pathogen that is very difficult to treat mainly due to its high propensity to acquire complex resistance traits. Notably, multidrug resistance (MDR)-Klebsiella pneumoniae (KP) infections are responsible for 22%-72% of mortality among hospitalized and immunocompromised patients. Although treatments with new drugs or with combined antibiotic therapies have some degree of success, there is still the urgency to investigate and develop an efficient approach against MDR-KP infections. In this study, we have evaluated, in an in vitro model of human macrophages, the efficacy of a combined treatment consisting of apoptotic body-like liposomes loaded with phosphatidylinositol 5-phosphate (ABL/PI5P) and φBO1E, a lytic phage specific for the major high-risk clone of KPC-positive MDR-KP. Results show that ABL/PI5P did not affect in a direct manner KKBO-1 viability, being able to reduce only the intracellular KKBO-1 bacterial load. As expected, φBO1E was effective mainly on reducing extracellular bacilli. Importantly, the combination of both treatments resulted in a simultaneous reduction of both intracellular and extracellular bacilli. Moreover, the combined treatment of KKBO-1-infected cells reduced proinflammatory TNF-α and IL-1ß cytokines and increased anti-inflammatory TGF-ß cytokine production. Overall, our data support the therapeutic value of a combined host- and pathogen-directed therapy as a promising approach, alternative to single treatments, to simultaneously target intracellular and extracellular pathogens and improve the clinical management of patients infected with MDR pathogens such as MDR-KP.


Asunto(s)
Bacteriófagos , Infecciones por Klebsiella , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Humanos , Infecciones por Klebsiella/tratamiento farmacológico , Infecciones por Klebsiella/microbiología , Klebsiella pneumoniae
5.
Microbiol Spectr ; 10(1): e0254621, 2022 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-35080463

RESUMEN

Mycobacterium abscessus is the etiological agent of severe pulmonary infections in vulnerable patients, such as those with cystic fibrosis (CF), where it represents a relevant cause of morbidity and mortality. Treatment of pulmonary infections caused by M. abscessus remains extremely difficult, as this species is resistant to most classes of antibiotics, including macrolides, aminoglycosides, rifamycins, tetracyclines, and ß-lactams. Here, we show that apoptotic body like liposomes loaded with phosphatidylinositol 5-phosphate (ABL/PI5P) enhance the antimycobacterial response, both in macrophages from healthy donors exposed to pharmacological inhibition of cystic fibrosis transmembrane conductance regulator (CFTR) and in macrophages from CF patients, by enhancing phagosome acidification and reactive oxygen species (ROS) production. The treatment with liposomes of wild-type as well as CF mice, intratracheally infected with M. abscessus, resulted in about a 2-log reduction of pulmonary mycobacterial burden and a significant reduction of macrophages and neutrophils in bronchoalveolar lavage fluid (BALF). Finally, the combination treatment with ABL/PI5P and amikacin, to specifically target intracellular and extracellular bacilli, resulted in a further significant reduction of both pulmonary mycobacterial burden and inflammatory response in comparison with the single treatments. These results offer the conceptual basis for a novel therapeutic regimen based on antibiotic and bioactive liposomes, used as a combined host- and pathogen-directed therapeutic strategy, aimed at the control of M. abscessus infection, and of related immunopathogenic responses, for which therapeutic options are still limited. IMPORTANCE Mycobacterium abscessus is an opportunistic pathogen intrinsically resistant to many antibiotics, frequently linked to chronic pulmonary infections, and representing a relevant cause of morbidity and mortality, especially in immunocompromised patients, such as those affected by cystic fibrosis. M. abscessus-caused pulmonary infection treatment is extremely difficult due to its high toxicity and long-lasting regimen with life-impairing side effects and the scarce availability of new antibiotics approved for human use. In this context, there is an urgent need for the development of an alternative therapeutic strategy that aims at improving the current management of patients affected by chronic M. abscessus infections. Our data support the therapeutic value of a combined host- and pathogen-directed therapy as a promising approach, as an alternative to single treatments, to simultaneously target intracellular and extracellular pathogens and improve the clinical management of patients infected with multidrug-resistant pathogens such as M. abscessus.


Asunto(s)
Antibacterianos/administración & dosificación , Fibrosis Quística/inmunología , Infecciones por Mycobacterium no Tuberculosas/tratamiento farmacológico , Mycobacterium abscessus/efectos de los fármacos , Fosfatos de Fosfatidilinositol/administración & dosificación , Amicacina/administración & dosificación , Amicacina/química , Animales , Antibacterianos/química , Fibrosis Quística/complicaciones , Fibrosis Quística/genética , Fibrosis Quística/microbiología , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Regulador de Conductancia de Transmembrana de Fibrosis Quística/inmunología , Femenino , Humanos , Liposomas/química , Macrófagos/inmunología , Masculino , Ratones , Ratones Endogámicos C57BL , Infecciones por Mycobacterium no Tuberculosas/etiología , Infecciones por Mycobacterium no Tuberculosas/inmunología , Infecciones por Mycobacterium no Tuberculosas/microbiología , Mycobacterium abscessus/fisiología , Fagosomas/inmunología , Fosfatos de Fosfatidilinositol/química , Especies Reactivas de Oxígeno/inmunología
6.
J Infect Dis ; 225(9): 1675-1679, 2022 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-34910807

RESUMEN

Chronic immune activation is the key pathogenetic event of Mycobacterium tuberculosis-human immunodeficiency virus (HIV) coinfection. We assessed the therapeutic value of phosphatidylserine-liposome (PS-L) in an in vitro model of M. tuberculosis-HIV coinfection. PS-L reduced nuclear factor-κB activation and the downstream production of tumor necrosis factor-α (TNF-α), interleukin-1ß (IL-1ß), and IL-6 in bacille Calmette-Guérin-infected macrophages and of TNF-α and IL-1ß in M. tuberculosis-infected and M. tuberculosis-HIV-coinfected macrophages. Importantly, a significant reduction of intracellular M. tuberculosis viability and HIV replication were also observed. These results support the further exploitation of PS-L as host-directed therapy for M. tuberculosis-HIV coinfection.


Asunto(s)
Coinfección , Infecciones por VIH , Mycobacterium tuberculosis , Tuberculosis , Infecciones por VIH/complicaciones , Humanos , Liposomas , Macrófagos , Fosfatidilserinas , Tuberculosis/complicaciones , Tuberculosis/tratamiento farmacológico , Factor de Necrosis Tumoral alfa , Replicación Viral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA