Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Plant Biol (Stuttg) ; 20(5): 870-878, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-29762883

RESUMEN

Despite the great diversity of plant growth-promoting bacteria (PGPB) with potential to partially replace the use of N fertilisers in agriculture, few PGPB have been explored for the production of commercial inoculants, reinforcing the importance of identifying positive plant-bacteria interactions. Aiming to better understand the influence of PGPB inoculation in plant development, two PGPB species with distant phylogenetic relationship were inoculated in maize. Maize seeds were inoculated with Bacillus sp. or Azospirillum brasilense. After germination, the plants were subjected to two N treatments: full (N+) and limiting (N-) N supply. Then, anatomical, biometric and physiological analyses were performed. Both PGPB species modified the anatomical pattern of roots, as verified by the higher metaxylem vessel element (MVE) number. Bacillus sp. also increased the MVE area in maize roots. Under N+ conditions, both PGPB decreased leaf protein content and led to development of shorter roots; however, Bacillus sp. increased root and shoot dry weight, whereas A. brasilense increased photosynthesis rate and leaf nitrate content. In plants subjected to N limitation (N-), photosynthesis rate and photosystem II efficiency increased in maize inoculated with Bacillus sp., whilst A. brasilense contained higher ammonium, amino acids and total soluble sugars in leaves, compared to the control. Plant developmental and metabolical patterns were switched by the inoculation, regardless of the inoculant bacterium used, producing similar as well as distinct modifications to the parameters studied. These results indicate that even non-diazotrophic inoculant strains can improve the plant N status as result of the morpho-anatomical and physiological modifications produced by the PGPB.


Asunto(s)
Azospirillum brasilense/metabolismo , Bacillus/metabolismo , Nitrógeno/farmacología , Raíces de Plantas/anatomía & histología , Zea mays/microbiología , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/metabolismo , Zea mays/crecimiento & desarrollo , Zea mays/metabolismo , Zea mays/fisiología
2.
J Dairy Sci ; 101(8): 6927-6936, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-29778470

RESUMEN

When correctly pasteurized, packaged, and stored, milk with low total bacterial counts (TBC) has a longer shelf life. Therefore, microorganisms that resist heat treatments are especially important in the deterioration of pasteurized milk and in its shelf life. The aim of this work was to quantify the thermoduric microorganisms after the pasteurization of refrigerated raw milk samples with low TBC and to identify the diversity of these isolates with proteolytic or lipolytic potential by RFLP analysis. Twenty samples of raw milk were collected in bulk milk tanks shortly after milking in different Brazilian dairy farms and pasteurized. The mean thermoduric count was 3.2 (±4.7) × 102 cfu/mL (2.1% of the TBC). Of the 310 colonies obtained, 44.2% showed milk spoilage potential, 32.6% were proteolytic and lipolytic simultaneously, 31% were exclusively proteolytic, and 48 (36.4%) were only lipolytic. Regarding the diversity, 8 genera were observed (Bacillus, Brachybacterium, Enterococcus, Streptococcus, Micrococcus, Kocuria, Paenibacillus, and Macrococcus); there was a predominance of endospore-forming bacteria (50%), and Bacillus licheniformis was the most common (34.1%) species. Considering the RFLP types, it was observed that the possible clonal populations make up the microbiota of different milk samples, but the same milk samples contain microorganisms of a single species with different RFLP types. Thus, even in milk with a high microbiological quality, it is necessary to control the potential milk-deteriorating thermoduric microorganisms to avoid the risk of compromising the shelf life and technological potential of pasteurized milk.


Asunto(s)
Bacterias/genética , Microbiología de Alimentos , Variación Genética , Leche/microbiología , Pasteurización/métodos , Animales , Bacterias/aislamiento & purificación , Brasil , Granjas
3.
J Dairy Sci ; 101(1): 75-83, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-29102138

RESUMEN

Refrigerated raw milk may contain psychrotrophic microorganisms that produce thermoresistant exoproteases and lipases, which may compromise the quality of processed fluid milk and dairy products during storage. The aim of this work was to quantify and identify the deteriorating psychrotrophic microbiota in Brazilian refrigerated raw milk using genetic diversity analysis. The mean psychrotrophic count was 1.1 × 104 cfu/mL. Of the total isolates, 47.8 and 29.8% showed deteriorating activity at 35°C within 48 h and 7°C within 10 d, respectively. Among the proteolytic species, more isolated by this study were Lactococcus lactis (27.3%), Enterobacter kobei (14.8%), Serratia ureilytica (8%), Aerococcus urinaeequi (6.8%), and Bacillus licheniformis (6.8%). Observed among lipolytics were E. kobei (17.7%), L. lactis (15.6%), A. urinaeequi (12.5%), and Acinetobacter lwoffii (9.4%). The isolates S. ureilytica, E. kobei, Pseudomonas spp., and Yersinia enterocolitica potentially produced alkaline metalloprotease (aprX). Despite the low counts, a considerable portion of the psychrotrophic microbiota presented spoilage potential, which reaffirms the need for rigor in the control of contamination and the importance of rapid processing as factors that maintain the quality of milk and dairy products.


Asunto(s)
Bacterias/aislamiento & purificación , Leche/microbiología , Animales , Bacterias/clasificación , Bacterias/enzimología , Bacterias/genética , Proteínas Bacterianas/metabolismo , Brasil , Bovinos , Microbiología de Alimentos , Lipasa/metabolismo , Microbiota
4.
Genet Mol Res ; 15(2)2016 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-27173309

RESUMEN

Increasing phosphorus use efficiency in agriculture is essential for sustainable food production. Thus, the aims of this study were: i) to identify phosphorus use efficiency (PUE) in popcorn lines during the early plant stages, ii) to study the relationship between traits correlated with PUE, and iii) to analyze genetic diversity among lines. To accomplish this, 35 popcorn lines from Universidade Estadual de Maringá breeding program were studied. The experiment was conducted in a growth chamber using a nutrient solution containing two concentrations of phosphorus (P): 2.5 µM or low P (LP) and 250 µM or high P (HP). After 13 days in the nutrient solution, root morphology traits, shoot and root dry weight, and P content of the maize seedlings were measured. A deviance analysis showed there was a high level of genetic variability. An unweighted pair group method with arithmetic mean (UPGMA) clustering analysis identified three groups for the LP treatment (efficient, intermediate, and inefficient) and three groups for the HP treatment (responsive, moderately responsive, and unresponsive). The results of a principal component analysis and selection index were consistent with the UPGMA analysis, and lines 1, 2, 13, 17, 26, and 31 were classified as PUE.


Asunto(s)
Fósforo/deficiencia , Fitomejoramiento , Selección Genética , Zea mays/genética , Variación Genética , Fósforo/metabolismo , Carácter Cuantitativo Heredable , Estrés Fisiológico , Zea mays/metabolismo
5.
Phytopathology ; 101(4): 416-24, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21077774

RESUMEN

Xanthomonas axonopodis pv. passiflorae causes bacterial spot in passion fruit. It attacks the purple and yellow passion fruit as well as the sweet passion fruit. The diversity of 87 isolates of pv. passiflorae collected from across 22 fruit orchards in Brazil was evaluated using molecular profiles and statistical procedures, including an unweighted pair-group method with arithmetical averages-based dendrogram, analysis of molecular variance (AMOVA), and an assigning test that provides information on genetic structure at the population level. Isolates from another eight pathovars were included in the molecular analyses and all were shown to have a distinct repetitive sequence-based polymerase chain reaction profile. Amplified fragment length polymorphism technique revealed considerable diversity among isolates of pv. passiflorae, and AMOVA showed that most of the variance (49.4%) was due to differences between localities. Cluster analysis revealed that most genotypic clusters were homogeneous and that variance was associated primarily with geographic origin. The disease adversely affects fruit production and may kill infected plants. A method for rapid diagnosis of the pathogen, even before the disease symptoms become evident, has value for producers. Here, a set of primers (Xapas) was designed by exploiting a single-nucleotide polymorphism between the sequences of the intergenic 16S-23S rRNA spacer region of the pathovars. Xapas was shown to effectively detect all pv. passiflorae isolates and is recommended for disease diagnosis in passion fruit orchards.


Asunto(s)
ADN Bacteriano/genética , Variación Genética , Passiflora/microbiología , Enfermedades de las Plantas/microbiología , Reacción en Cadena de la Polimerasa/métodos , Xanthomonas axonopodis/clasificación , Análisis del Polimorfismo de Longitud de Fragmentos Amplificados , Brasil , Análisis por Conglomerados , ADN Bacteriano/química , ADN Bacteriano/aislamiento & purificación , ADN Espaciador Ribosómico , Geografía , Passiflora/genética , ARN Ribosómico 16S/genética , ARN Ribosómico 23S/genética , Alineación de Secuencia , Análisis de Secuencia de ADN , Virulencia , Xanthomonas axonopodis/genética , Xanthomonas axonopodis/aislamiento & purificación , Xanthomonas axonopodis/patogenicidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...