Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Environ Technol ; 44(8): 1083-1098, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34704544

RESUMEN

Staphylococcus aureus is often associated worldwide with foodborne illnesses, and the elimination of biofilms formed by this bacterium from industrial surfaces is very challenging. To date, there have been few attempts to investigate plant oils obtained by recent green technologies, applied against biofilms on usual surfaces of the food industry and bacteria isolated from such environment. Therefore, this study evaluated the activity of Moringa oleifera seed oil (MOSO), extracted with pressurized n-propane, against standard and environmental S. aureus biofilms. Additionally, a genotypic and phenotypic study of the environmental S. aureus was proposed. It was found that this bacterium was a MSSA (methicillin-sensitive S. aureus), a carrier of icaA and icaD genes that has strong adhesion (OD550=1.86 ± 0.19) during biofilm formation. The use of pressurized n-propane as a solvent was efficient in obtaining MOSO, achieving a yield of 60.9%. Gas chromatography analyses revealed the presence of a rich source of fatty acids in MOSO, mainly oleic acid (62.47%), behenic acid (10.5%) and palmitic acid (7.32%). On polystyrene surface, MOSO at 0.5% and 1% showed inhibitory and bactericidal activity, respectively, against S. aureus biofilms. MOSO at 1% allowed a maximum reduction of 2.38 log UFC/cm² of S. aureus biofilms formed on PVC (polyvinyl chloride) surface. Scanning electron microscopy showed disturbances on the surface of S. aureus after exposure to MOSO. These unprecedented findings suggest that MOSO extracted with pressurized n-propane is potentially capable of inhibiting biofilms of different S. aureus strains, thus, contributing to microbiological safety during food processing.


Asunto(s)
Moringa oleifera , Staphylococcus aureus , Propano/farmacología , Biopelículas , Aceites de Plantas/farmacología , Antibacterianos/farmacología , Pruebas de Sensibilidad Microbiana
2.
Artículo en Inglés | MEDLINE | ID: mdl-35704782

RESUMEN

Cachaça is a typical Brazilian distilled beverage made from fermented sugarcane juice. The copper levels in alembic cachaça are of great concern among producers, and the removal of this contaminant is important for the quality of the product. The present study aimed to remove copper ions from alembic cachaça by adsorption. Sugarcane bagasse, okara, Moringa oleifera Lam., three different types of zeolites, and two types of commercial charcoal were tested as biosorbents. The heat-treated sugarcane bagasse removed 100% of the copper present in a cachaça sample, while other low-cost natural adsorbents had close to 50% removal as was observed for M. oleifera seeds and okara. All adsorbents had porous and fibrous structures, favorable to adsorption. A kinetic study showed that a pseudo-second-order model was appropriate, with equilibrium times of 15 h for heat-treated sugarcane bagasse, okara, and M. oleifera seeds used as adsorbents. The Langmuir model better fitted the experimental data, indicating monolayer adsorption. The maximum adsorption capacity was 17.00, 0.77, and 5.33 mg of Cu g-1 for the heat-treated sugarcane bagasse, M. oleifera seeds, and okara, respectively. The results presented here are promising indicating three agro-industrial residues were favorable to the adsorption of copper ions from alembic cachaça.


Asunto(s)
Saccharum , Contaminantes Químicos del Agua , Adsorción , Celulosa/química , Cobre/química , Concentración de Iones de Hidrógeno , Iones , Cinética , Saccharum/química , Contaminantes Químicos del Agua/análisis
3.
Environ Technol ; 42(27): 4296-4305, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32272870

RESUMEN

Contaminations by Staphylococcus aureus in food industry environments have been extended to industrial Effluent Treatment Plant (ETP). The methodologies used in ETP for bacterial removals and quality parameters adjustment commonly use products toxic to the environment, being mostly inefficient against virulent bacteria such as S. aureus. Seeds of Moringa oleifera Lam. (MO) have potential to be used in ETP as an alternative to harmful products, as it has both the ability to regulate the physicochemical parameters of water and has antibacterial action. Functionalization of MO with magnetite magnetic nano particles (Fe3O4) at nano scale focusing on coagulation and flocculation of wastewater has been gaining prominence. Therefore, the present study evaluated the potential use of the magnetic coagulant MO-Fe3O4 in the elimination of S. aureus in synthetic dairy effluent; concomitantly sought to adjust the quality levels of physicochemical parameters. MO-Fe3O4 added to synthetic dairy effluent at different concentrations amounted to 16 treatments, which were evaluated for removal of color, turbidity, UV254nm and S. aureus on the effluent surface and sludge after 30 min of sedimentation. The results confirmed the efficient elimination of S. aureus simultaneously with a significant reduction of the physicochemical values, with constant efficiency up to 30 min. Scanning electron microscopy images confirm the removal of S. aureus on the effluent surface and sludge. Thus, this study was able to present a natural coagulant capable of remove bacteria and adjust the quality levels of the effluent after 10 min of sedimentation, making this biotechnological innovation highly applicable to ETP.


Asunto(s)
Nanopartículas de Magnetita , Moringa oleifera , Purificación del Agua , Antibacterianos/farmacología , Floculación , Staphylococcus aureus , Aguas Residuales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...