RESUMEN
The incorrect disposal of textile dyes, such as Reactive Black 5 (RB5), causes several problems for living beings and the quality of the environment. Nanobiocomposites (NBC) produced from endophytic fungi (potentially remediation dyes-agents) and magnetic nanoparticles have high biotechnological potential due to their superparamagnetic behavior, which would allow their recovery through the magnetic field after the bioremediation process. This work aimed to obtain a new nanobiocomposite from the interaction of magnetite nanoparticles (Fe3O4) with the endophyte Aspergillus flavus (Af-CL-7) to evaluate its bioremediation capacity and to reduce the toxicity of RB5 and its reuse. Before obtaining the NBC, Af-CL-7 showed discoloration of RB5 and it was tolerant to all tested concentrations of this dye. The discovery of the nanobiocomposite textile dye bioremediator product presents a significant environmental advantage by addressing the issue of water pollution caused by textile dyes. The NBC called Af-Fe3O4 was successfully obtained with the magnetized endophyte, and their magnetic properties were verified by VSM analysis and by action of magnetic fields generated by Nd-Fe-B magnets SEM analyzes showed that the nanoparticles did not cause any damage to the hypha morphology, and TEM analyzes confirmed the presence of nanoparticles in the fungus wall and also inside the cell. The NBC Af-Fe3O4 and Af-CL-7 showed, respectively, 96.1% and 92.2% of RB5 discoloration in the first use, 91.1% e 86.2% of discoloration in the validation test, and 89.0% in NBC reuse. In the toxicological bioassay with Lactuca sativa seeds, NBC showed a positive reduction in the toxicity of RB5 after treatment, allowing the hypocotyl growth to be statistically similar to the control with water. Thus, we highlight the promising obtaining process of NBC that could be applied in bioremediation of contaminated waters, wherein the industrial economic cost will depend on the fermentation efficiency, biomass production and nanoparticle synthesis.
Asunto(s)
Aspergillus flavus , Nanopartículas de Magnetita , Biodegradación Ambiental , Hongos , Colorantes , EndófitosRESUMEN
Endophytic fungi produce a range of known metabolites and several others, not yet explored, which present important biological activities from the pharmaceutical and industrial perspective. Several studies have reported the diversity of endophytes in Coffea arabica plants, although few have been described in organic cultures. In the current paper, we describe the chemical profile of specialized metabolites in the ethyl acetate phase in a strain of the endophytic fungus Colletotrichum siamense associated with coffee (Coffea arabica L.) (Rubiaceae) and its potential against tumor cells and bacteria of medical and food importance. Cytotoxicity assays in tumor cells MCF-7 and HepG2/C3A were performed by MTT and microdilution in broth to evaluate the antibacterial action of metabolic extract. The antiproliferative assay showed promising results after 24 h of treatment, with 50% injunction concentrations for the two cell types. UHPLC-MS/MS analyses with an electrospray ionization source were used to analyze the extracts and identify compounds of species Colletotrichum siamense, which is still little explored as a source of active metabolites. Many of these compounds observed in the endophytic need to be chemically synthesized in industry, at high costs, while production by the fungus becomes a chemically and economically more viable alternative. Pyrocatechol, gentisyl alcohol, and alpha-linolenic acid, associated with different mechanisms of action against tumor cells, were detected among the main compounds. The extract of the endophytic fungus Colletotrichum siamense presented several compounds with pharmacological potential and antibacterial activity, corroborating its potential in biotechnological applications.
Asunto(s)
Coffea , Colletotrichum , Coffea/microbiología , Café/metabolismo , Espectrometría de Masas en Tándem , Antibacterianos/farmacología , Antibacterianos/metabolismo , Extractos Vegetales/farmacología , Extractos Vegetales/metabolismo , EndófitosRESUMEN
The protective and growth-promoting activities of Colletrotrichum and Diaporthe endophytes on tomato plants (Lycopersicon esculentum Mill.) are underexplored. We screened 40 endophytic fungi associated with Mexican shrimp plant (Justicia brandegeana) using an in vitro dual culture assay for Fusarium oxysporum, one of the most important phytopathogens of tomato plants. The three best antagonists, Colletotrichum siamense (JB224.g1), C. siamense (JB252.g1), and Diaporthe masirevicii (JB270), were identified based on multilocus sequence analysis. They were assessed in vitro for their inhibition of F. oxysporum and phosphate solubilisation capacity, and for the production of indole acetic acid. Greenhouse experiments verified the growth-promoting effects of these endophytes and the suppression of F. oxysporum symptoms in tomato plants. Under greenhouse conditions, the JB252.g1 and JB270 isolates showed positive results for seedling emergence speed. The radicular system depth of plants inoculated with JB270 was greater than that in uninoculated plants (27.21 vs 21.95 cm). The soil plant analysis development chlorophyll metre (SPAD) index showed statistically significant results, especially for the endophyte JB224.g1 (36.99) compared to the control plants (30.90) and plants infected solely with F. oxysporum (33.64).
RESUMEN
In this work, the antibacterial activity of a crude extract of the endophytic fungus Flavodon flavus (JB257), isolated from leaves of Justicia brandegeana, was evaluated against both the vegetative and sporulated forms of Alicyclobacillus acidoterrestris. The microdilution technique was performed in order to determine the antibacterial activity of the crude extract alone as well as in combination with the bacteriocin, nisin. The minimum inhibitory concentration (MIC) of the crude extract and nisin alone against A. acidoterrestris vegetative forms were 250 µg/mL and 31.5 µg/mL, respectively, while the minimum bactericidal concentrations (MBC) were 1000 µg/mL and 62.5 µg/mL,respectively. For A. acidoterrestris spores, treatment with the crude extract at a concentration of 500 µg/mL caused a 47% reduction in growth, while nisin at 62.5 µg/mL could reduce 100% of the growth. The in vitro evaluation of the crude extract combined with nisin against A. acidoterrestris by the Checkerboard method showed a synergistic interaction between the two compounds. In addition, greater selectivity towards bacterial cells over host cells, a human hepatocyte cell line, was achieved when the crude extract was combined with nisin, Using scanning electron microscopy, interferences in the cell membrane of A. acidoterrestris could be observed after treatment with the crude extract. The results presented in this study indicate that the crude extract of the endophyte F. flavus has biotechnological potential in the food industry, especially for the treatment of orange juices through the control of A. acidoterrestris.
Asunto(s)
Alicyclobacillus/efectos de los fármacos , Citrus sinensis/microbiología , Microbiología de Alimentos/métodos , Jugos de Frutas y Vegetales/microbiología , Género Justicia/química , Género Justicia/microbiología , Polyporales/química , Antibacterianos/farmacología , Pruebas de Sensibilidad Microbiana , Nisina/farmacologíaRESUMEN
Endophytes are growth-promoting agents capable of synthesizing phytohormones, uptaking nutrients, and controlling pathogens. There is a strong potential to exploit them in the agriculture field like biofertilizers and biocontrol agents. In this work, we aimed to evaluate endophytic fungi isolated from Pachystachys lutea for their potential to solubilize phosphate, synthesise indole acetic acid (IAA), antagonize phytopathogens, and promote plant growth under greenhouse conditions. The phosphate solubilization efficiency was assessed on Pikovskayas agar medium. For analysis of IAA production, mycelia plugs of endophytes were cultured in Potato Dextrose Broth medium supplemented with L-tryptophan, with Salkowski Reagent, and the absorbance of the culture was measured. The antagonism evaluation of strain Alternaria sp. PL75 against phytopathogens was performed using the paired-culture technique. The promotion of plant growth provided by Alternaria sp. PL75 was evaluated in tomato plants. All strains evaluated were able to solubilize phosphate; however, the strain Alternaria sp. PL75 was the most effective (4.29). Two strains, Nemania sp. PL27 and Alternaria sp. PL75, produced 1.86 and 1.73 & 956;g mL-1 of IAA, respectively. In the antagonism assay, the endophyte Alternaria sp. PL75 and its fungal extract showed the best results against the pathogen Moniliophthora perniciosa. The greenhouse experiment result showed the endophyte Alternaria sp. PL75 increased the plantlets emergency speed index and the percentage of germination from 60 to 81.63%. It was also observed a statistical significance in the shoot length of the treated plants with the endophyte suspension (55.38 cm) compared to the control (41.67 cm).
Asunto(s)
Endófitos , Fosfatos , Lamiales/crecimiento & desarrollo , Ácido Acético/análisisRESUMEN
Endophytes are growth-promoting agents capable of synthesizing phytohormones, uptaking nutrients, and controlling pathogens. There is a strong potential to exploit them in the agriculture field like biofertilizers and biocontrol agents. In this work, we aimed to evaluate endophytic fungi isolated from Pachystachys lutea for their potential to solubilize phosphate, synthesise indole acetic acid (IAA), antagonize phytopathogens, and promote plant growth under greenhouse conditions. The phosphate solubilization efficiency was assessed on Pikovskayas agar medium. For analysis of IAA production, mycelia plugs of endophytes were cultured in Potato Dextrose Broth medium supplemented with L-tryptophan, with Salkowski Reagent, and the absorbance of the culture was measured. The antagonism evaluation of strain Alternaria sp. PL75 against phytopathogens was performed using the paired-culture technique. The promotion of plant growth provided by Alternaria sp. PL75 was evaluated in tomato plants. All strains evaluated were able to solubilize phosphate; however, the strain Alternaria sp. PL75 was the most effective (4.29). Two strains, Nemania sp. PL27 and Alternaria sp. PL75, produced 1.86 and 1.73 & 956;g mL-1 of IAA, respectively. In the antagonism assay, the endophyte Alternaria sp. PL75 and its fungal extract showed the best results against the pathogen Moniliophthora perniciosa. The greenhouse experiment result showed the endophyte Alternaria sp. PL75 increased the plantlets emergency speed index and the percentage of germination from 60 to 81.63%. It was also observed a statistical significance in the shoot length of the treated plants with the endophyte suspension (55.38 cm) compared to the control (41.67 cm).(AU)
Asunto(s)
Lamiales/crecimiento & desarrollo , Endófitos , Ácido Acético/análisis , FosfatosRESUMEN
Endophytic microorganisms live inside the plants without causing any damage to their hosts. In the agricultural field, these endophytes might be a strategy of biological control for phytopathogens. We aimed to isolate endophytic fungifrom yellowpassion fruit (Passiflora edulis) leaves, evaluating its biocontrol capacity by in vitroantagonism against phytopathogen Colletotrichum sp. CNPU378. We also carried out greenhouse experiments in bean seedlings. A high colonization frequency was obtained (89%), and the molecular identification based on DNA sequencing attested Colletotrichumas the most frequent genus and minor occurrence of Curvulariaendophytes. The endophytes tested showed different types of competitive interactions in in vitro antagonism inhibition rate ranging from 28.8 to 48.8%. There were 10 promising antagonists tested for their antagonist activity of crude extracts of secondary metabolites, in which strain PE-36 (20.8%) stood out among the other strains evaluated. In the greenhouse assay, plants inoculated only with endophyte Colletotrichumsp. PE-36 was symptomless and suggest that the endophyte strengthened the growth promotion in common bean plants, especially in the root length and number of leaves when compared to control plantsand other treatments. Despite many fungiof Colletotrichumgenus being described as causative agents of anthracnose, in this study, the plant sampled was colonized predominantly by Colletotrichumendophytes living in asymptomatic relationship. By the way,we come across a Colletotrichumsp. endophyte able to antagonize a Colletotrichumsp. pathogen