Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Pharmacol Biochem Behav ; 240: 173778, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38679081

RESUMEN

Depression and anxiety disorders have their pathophysiologies linked to inflammation and oxidative stress. In this context, celecoxib (CLX) and etoricoxib (ETR) inhibit cyclooxygenase 2 (COX-2), an enzyme expressed by cells involved in the inflammatory process and found in the brain. Studies have been using CLX as a possible drug in the treatment of depression, although its mechanisms at the central nervous system level are not fully elucidated. In this study, the effects of CLX and ETR on behavioral, oxidative, and inflammatory changes induced by systemic exposure to Escherichia coli lipopolysaccharide (LPS) were evaluated in adult male swiss mice. For ten days, the animals received intraperitoneal injections of LPS at 0.5 mg/kg. From the sixth to the tenth day, one hour after LPS exposure, they were treated orally with CLX (15 mg/kg), ETR (10 mg/kg), or fluoxetine (FLU) (20 mg/kg). Twenty-four hours after the last oral administration, the animals underwent evaluation of locomotor activity (open field test), predictive tests for depressive-like behavior (forced swim and tail suspension tests), and anxiolytic-like effect (elevated plus maze and hole board tests). Subsequently, the hippocampus, prefrontal cortex and striatum were dissected for the measurement of oxidative and nitrosative parameters (malondialdehyde, nitrite, and glutathione) and quantification of pro-inflammatory cytokines (IL-1ß and IL-6). LPS induced depressive and anxious-like behavior, and treatment with CLX or ETR was able to reverse most of the behavioral changes. It was evidenced that nitrosative stress and the degree of lipid peroxidation induced by LPS were reduced in different brain areas after treatment with the drugs, as well as the endogenous defense system against free radicals was strengthened. CLX and ETR also significantly reduced LPS-induced cytokine levels. These data are expected to expand information on the role of inflammation in depression and anxiety and provide insights into possible mechanisms of COX-2 inhibitors in psychiatric disorders with a neurobiological basis in inflammation and oxidative stress.


Asunto(s)
Ansiedad , Conducta Animal , Celecoxib , Inhibidores de la Ciclooxigenasa 2 , Depresión , Lipopolisacáridos , Estrés Oxidativo , Animales , Masculino , Ratones , Lipopolisacáridos/farmacología , Estrés Oxidativo/efectos de los fármacos , Inhibidores de la Ciclooxigenasa 2/farmacología , Depresión/tratamiento farmacológico , Depresión/inducido químicamente , Depresión/metabolismo , Ansiedad/tratamiento farmacológico , Ansiedad/inducido químicamente , Conducta Animal/efectos de los fármacos , Celecoxib/farmacología , Celecoxib/administración & dosificación , Etoricoxib/farmacología , Enfermedades Neuroinflamatorias/tratamiento farmacológico , Enfermedades Neuroinflamatorias/metabolismo , Enfermedades Neuroinflamatorias/inducido químicamente , Inflamación/tratamiento farmacológico , Inflamación/inducido químicamente , Inflamación/metabolismo
2.
Naunyn Schmiedebergs Arch Pharmacol ; 395(9): 1029-1045, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35665831

RESUMEN

We postulated that dimethyl fumarate (DMF) exerts neuroprotective effects against depression-like behaviors through astrocytes and microglia modulation. To ascertain our hypothesis and define the mechanistic pathways involved in effect of DMF on neuroinflammation, we used the depression model induced by chronic unpredictable mild stress (CUMS), in which, the mice were exposed to stressful events for 28 days and from the 14th day they received DMF in the doses of 50 and 100 mg/kg or fluoxetine 10 mg/kg or saline. On the 29th day, the animals were subjected to behavioral tests. Microglia (Iba1) and astrocyte (GFAP) marker expressions were evaluated by immunofluorescence analyzes and the cytokines TNF-α and IL-Iß by immunoenzymatic assay. In addition, computational target prediction, 3D protein structure prediction, and docking calculations were performed with monomethyl fumarate (DMF active metabolite) and the Keap1 and HCAR2 proteins, which suggested that these could be the probable targets related protective effects. CUMS induced anxiety- and depressive-like behaviors, cognitive deficit, decreased GFAP, and increased Iba1, TNF-α, and IL-Iß expression in the hippocampus. These alterations were reversed by DMF. Thus, it is suggested that one of the mechanisms involved in the antidepressant effect of DMF is neuroinflammatory suppression, through the signaling pathway HCAR2/Nrf2. However, more studies must be performed to better understand the molecular mechanisms of this drug.


Asunto(s)
Dimetilfumarato , Fármacos Neuroprotectores , Animales , Astrocitos , Depresión , Proteína 1 Asociada A ECH Tipo Kelch , Ratones , Microglía , Factor 2 Relacionado con NF-E2 , Receptores Acoplados a Proteínas G , Transducción de Señal , Factor de Necrosis Tumoral alfa
3.
Artículo en Inglés | MEDLINE | ID: mdl-31954756

RESUMEN

Metabolic and psychiatric disorders present a bidirectional relationship. GLP-1 system, known for its insulinotropic effects, has also been associated with numerous regulatory effects in cognitive and emotional processing. GLP-1 receptors (GLP-1R) agonists present neuroprotective and antidepressant/anxiolytic properties. However, the effects of GLP-1R agonism in bipolar disorder (BD) mania and the related cognitive disturbances remains unknown. Here, we investigated the effects of the GLP-1R agonist liraglutide (LIRA) at monotherapy or combined with lithium (Li) against D-amphetamine (AMPH)-induced mania-like symptoms, brain oxidative and BDNF alterations in mice. Swiss mice received AMPH 2 mg/kg or saline for 14 days. Between days 8-14, they received LIRA 120 or 240 µg/kg, Li 47.5 mg/kg or the combination Li + LIRA, on both doses. After behavioral evaluation the brain areas prefrontal cortex (PFC), hippocampus and amygdala were collected. AMPH induced hyperlocomotion, risk-taking behavior and multiple cognitive deficits which resemble mania. LIRA reversed AMPH-induced hyperlocomotion, working and recognition memory impairments, while Li + LIRA240 rescued all behavioral changes induced by AMPH. LIRA reversed AMPH-induced hippocampal oxidative and neurotrophic changes. Li + LIRA240 augmented Li antioxidant effects and greatly reversed AMPH-induced BDNF changes in PFC and hippocampus. LIRA rescued the weight gain induced by Li in the course of mania model. Therefore, LIRA can reverse some mania-like behavioral alterations and combined with Li augmented the mood stabilizing and neuroprotective properties of Li. This study points to LIRA as a promising adjunctive tool for BD treatment and provides the first rationale for the design of clinical trials investigating its possible antimanic effect.


Asunto(s)
Trastorno Bipolar/tratamiento farmacológico , Dextroanfetamina/toxicidad , Receptor del Péptido 1 Similar al Glucagón/agonistas , Liraglutida/administración & dosificación , Litio/administración & dosificación , Manía/tratamiento farmacológico , Trastornos de la Memoria/tratamiento farmacológico , Animales , Trastorno Bipolar/inducido químicamente , Trastorno Bipolar/psicología , Sinergismo Farmacológico , Peroxidación de Lípido/efectos de los fármacos , Peroxidación de Lípido/fisiología , Masculino , Manía/inducido químicamente , Manía/psicología , Trastornos de la Memoria/inducido químicamente , Trastornos de la Memoria/psicología , Ratones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...