Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cereb Cortex ; 33(24): 11456-11470, 2023 12 09.
Artículo en Inglés | MEDLINE | ID: mdl-37823340

RESUMEN

In trace fear conditioning, the prelimbic cortex exhibits persistent activity during the interval between the conditioned and unconditioned stimuli, which maintains a conditioned stimulus representation. Regions cooperating for this function or encoding the conditioned stimulus before the interval could send inputs to the prelimbic cortex, supporting learning. The basolateral amygdala has conditioned stimulus- and unconditioned stimulus-responsive neurons, convergently activated. The prelimbic cortex could directly project to the basolateral amygdala to associate the transient memory of the conditioned stimulus with the unconditioned stimulus. We investigated the neuronal circuit supporting temporal associations using contextual fear conditioning with a 5-s interval, in which 5 s separates the contextual conditioned stimulus from the unconditioned stimulus. Injecting retrobeads, we quantified c-Fos in prelimbic cortex- or basolateral amygdala-projecting neurons from 9 regions after contextual fear conditioning with a 5-s interval or contextual fear conditioning, in which the conditioned and unconditioned stimuli overlap. The contextual fear conditioning with a 5-s interval activated ventral CA1 and perirhinal cortex neurons projecting to the prelimbic cortex and prelimbic cortex neurons projecting to basolateral amygdala. Both fear conditioning activated ventral CA1 and lateral entorhinal cortex neurons projecting to basolateral amygdala and basolateral amygdala neurons projecting to prelimbic cortex. The perirhinal cortex â†’ prelimbic cortex and ventral CA1 â†’ prelimbic cortex connections are the first identified prelimbic cortex afferent projections participating in temporal associations. These results help to understand time-linked memories, a process required in episodic and working memories.


Asunto(s)
Complejo Nuclear Basolateral , Corteza Perirrinal , Complejo Nuclear Basolateral/fisiología , Corteza Prefrontal/fisiología , Aprendizaje/fisiología , Condicionamiento Clásico/fisiología
2.
Behav Brain Res ; 231(1): 213-6, 2012 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-22469627

RESUMEN

Cocaine addiction is a public health issue in many countries, stressing the need for more effective treatments. As all drugs of abuse, cocaine acts on the brain reward system, increasing dopamine (DA) levels. Other neurotransmitters such as acetylcholine (ACh) are involved in the mechanisms underlying the development and the maintenance of cocaine addiction. ACh plays an important role in learning and memory processes and also regulates DA in some specific regions of the central nervous system. The present study investigated the effects of biperiden, a muscarinic cholinergic (mACh) antagonist in two animal models: conditioned place preference (CPP) and behavioral sensitization. Male C57BL/6J mice were used in both studies. The CPP protocol was unbiased and carried out in three phases: habituation, conditioning and testing. For conditioning, cocaine was injected at a dose of 10mg/kg in eight 15 min-sessions. The treatment with biperiden (doses of 0.1, 1 and 10 mg/kg) was made 30 min prior to the testing session. For behavioral sensitization development, cocaine was administered at the dose of 10 mg/kg for 10 days. After sensitization, two challenges were performed: saline and cocaine (5 mg/kg). Biperiden (10 mg/kg) was administered 30 min before the cocaine challenge. At the dose of 10 mg/kg, biperiden blocked the cocaine-CPP expression, suggesting an effect on conditioned memory retrieval. However, the same dose potentiated the expression of behavioral sensitization, suggesting an increase in DA release, probably in the NAc. Biperiden, as other mACh antagonists, may be a promising drug for the pharmacologic treatment of cocaine addiction.


Asunto(s)
Biperideno/farmacología , Cocaína/farmacología , Condicionamiento Operante/efectos de los fármacos , Inhibidores de Captación de Dopamina/farmacología , Antagonistas Muscarínicos/farmacología , Receptor Muscarínico M1/antagonistas & inhibidores , Animales , Aprendizaje por Asociación/efectos de los fármacos , Conducta Animal/efectos de los fármacos , Masculino , Ratones
3.
Behav Neurosci ; 122(1): 98-106, 2008 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-18298253

RESUMEN

Nociceptin, or orphanin FQ (N/OFQ), the endogenous ligand of NOP receptors, is known to regulate learning and memory processes. To verify the role of N/OFQ in the acquisition of contextual (CFC) and tone fear conditioning (TFC), Wistar male rats received intracerebroventricular injections of N/OFQ (0.1-5.0 nmol) before training, and were tested 24 and 48 hr later to access the freezing response to context and tone, respectively. The intermediate doses (1.0 and 2.5 nmol) impaired the CFC test, sparing TFC. The highest dose (5.0 nmol) reduced freezing during both tests, a result that may be due to nonspecific effects. The posttraining injection of N/OFQ (1 or 5 nmol) did not interfere with CFC and TFC, suggesting a specific effect of the peptide in acquisition processes. Moreover, the impairment observed with N/OFQ (1 nmol) in CFC cannot be attributed to a state-dependent learning because it was not reversed by its pretest administration. The data support the negative role of N/OFQ in the acquisition of aversively motivated tasks, which encompass a spatial component and depend on the hippocampus.


Asunto(s)
Condicionamiento Psicológico/efectos de los fármacos , Miedo , Péptidos Opioides/farmacología , Estimulación Acústica , Análisis de Varianza , Animales , Conducta Animal/efectos de los fármacos , Conducta Animal/fisiología , Relación Dosis-Respuesta a Droga , Electrochoque/efectos adversos , Reacción Cataléptica de Congelación/efectos de los fármacos , Inyecciones Intraventriculares/métodos , Masculino , Ratas , Ratas Wistar , Factores de Tiempo , Nociceptina
4.
J Neurophysiol ; 98(3): 1820-6, 2007 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-17625057

RESUMEN

It has been shown that exercise is helpful against brain disorders. However, this may not be true for intense exercise (IE). Because it is easy to misadjust exercise intensity with physical condition, it is essential to know the effects of IE on cognitive process because it may have important consequences on people skills and work skills. We investigated the effects of IE on male C57Bl/6 mice, 3-mo-old, undergoing 10 days of intense and exhaustive running program on cognition and its possible relationship with brain oxidative stress. Cognition was evaluated by three different cognitive tests: passive avoidance task, contextual fear conditioning, and tone fear conditioning, performed 24 h after the last exercise session. Brain oxidative stress was evaluated by lipid peroxidation and protein oxidation. There was a remarkable memory reduction of exercised animals in comparison with the control group, associated with increase in the brain oxidative stress, with no alterations in shock sensitivity, locomotion and anxiety parameters. Concurrent vitamin C and E supplementation fully prevented the memory decrement induced by IE and partially recovered both the increased the brain lipid peroxidation and the protein oxidation. In conclusion, IE-induces a high index of brain oxidative stress and impairs memory in murine model that was prevented by vitamin C and E supplementation.


Asunto(s)
Encefalopatías/fisiopatología , Encefalopatías/psicología , Trastornos del Conocimiento/etiología , Estrés Oxidativo/fisiología , Condicionamiento Físico Animal , Animales , Encefalopatías/etiología , Trastornos del Conocimiento/fisiopatología , Masculino , Ratones , Ratones Endogámicos C57BL
5.
Brain Res Bull ; 69(4): 440-6, 2006 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-16624675

RESUMEN

While considerable evidence implicates NMDA receptors in the hippocampus in contextual fear conditioning, the role of other brain regions is less well understood. To further investigate this issue, rats were subjected to a contextual fear conditioning task and then classified as high or low responders according to performance. Density of NMDA receptors was evaluated using [3H]MK-801 autoradiography in 52 brain areas and expression of NR2A and NR2B subunits was studied with in situ hybridization in the same brains. Results revealed no differences between high- and low-performance rats in NMDA receptor binding in any of the brain areas studied. Similarly, NR2B subunit expression was also not different between groups. However, NR2A expression was significantly higher in the caudate-putamen of low-performance rats. These results suggest that NMDA receptors in the caudate-putamen may also be involved in contextual fear conditioning performance.


Asunto(s)
Condicionamiento Psicológico , Cuerpo Estriado/metabolismo , Miedo , Receptores de N-Metil-D-Aspartato/biosíntesis , Amígdala del Cerebelo/metabolismo , Animales , Núcleo Caudado/metabolismo , Cuerpo Estriado/anatomía & histología , Maleato de Dizocilpina/farmacología , Antagonistas de Aminoácidos Excitadores/farmacología , Hipocampo/metabolismo , Hibridación in Situ , Masculino , Putamen/metabolismo , ARN Mensajero/biosíntesis , Ratas , Ratas Wistar , Receptores de N-Metil-D-Aspartato/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...