Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
1.
Pharmaceutics ; 16(4)2024 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-38675171

RESUMEN

Cutaneous leishmaniasis (CL) is a neglected tropical disease. The treatment is restricted to drugs, such as meglumine antimoniate and amphotericin B, that exhibit toxic effects, high cost, long-term treatment, and limited efficacy. The development of new alternative therapies, including the identification of effective drugs for the topical and oral treatment of CL, is of great interest. In this sense, a combination of topical photodynamic therapy (PDT) with chloroaluminum phthalocyanine liposomes (Lip-ClAlPc) and the oral administration of a self-emulsifying drug delivery system containing fexinidazole (SEDDS-FEX) emerges as a new strategy. The aim of the present study was to prepare, characterize, and evaluate the efficacy of combined therapy with Lip-ClAlPc and SEDDS-FEX in the experimental treatment of Leishmania (Leishmania) major. Lip-ClAlPc and SEDDS-FEX were prepared, and the antileishmanial efficacy study was conducted with the following groups: 1. Lip-ClAlPc (0.05 mL); 2. SEDDS-FEX (50 mg/kg/day); 3. Lip-ClAlPc (0.05 mL)+SEDDS-FEX (50 mg/kg/day) combination; 4. FEX suspension (50 mg/kg/day); and 5. control (untreated). BALB/c mice received 10 sessions of topical Lip-ClAlPc on alternate days and 20 consecutive days of SEDDS-FEX or FEX oral suspension. Therapeutical efficacy was evaluated via the parasite burden (limiting-dilution assay), lesion size (mm), healing of the lesion, and histological analyses. Lip-ClAlPc and SEDDS-FEX presented physicochemical characteristics that are compatible with the administration routes used in the treatments. Lip-ClAlPc+SEDDS-FEX led to a significant reduction in the parasitic burden in the lesion and spleen when compared to the control group (p < 0.05) and the complete healing of the lesion in 43% of animals. The Lip-ClAlPc+SEDDS-FEX combination may be promising for the treatment of CL caused by L. major.

2.
Biomed Pharmacother ; 165: 115280, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37541172

RESUMEN

Doxorubicin (DOX) loaded liposomes have been used and studied in the last decades due to the significant decrease in DOX induced cardiac and systemic toxicity relative to administration of free drug. Therefore, new strategies are sought to improve DOX delivery and antitumor activity, while avoiding side effects. Recently, folate-coated pH-sensitive liposomes (SpHL-Fol) have been studied as a tool to enhance cellular uptake and antitumor activity of paclitaxel and DOX in breast cancer cells expressing folate receptor (FR+). However, the elucidation of folate functionalization relevance in DOX-loaded SpHL (SpHL-DOX-Fol) in different cell types (MDA-MB-231, MCF-7, and A549), as well as, the complete safety evaluation, is necessary. To achieve these objectives, SpHL-DOX-Fol was prepared and characterized as previously described. Antitumor activity and acute toxicity were evaluated in vivo through direct comparison of free DOX verses SpHL-DOX, a well-known formulation to reduce DOX cardiotoxicity. The obtained data are crucial to support future translational research. Liposomes showed long-term stability, suitable for biological use. Cellular uptake, cytotoxicity, and percentage of migration inhibition were significantly higher for MDA-MB-231 (FR+) treated with SpHL-DOX-Fol. In addition, SpHL-DOX-Fol demonstrated a decrease in the systemic toxic effects of DOX, mainly in renal and cardiac parameters evaluation, even using a higher dose (20 mg/kg). Collectively these data build the foundation of support demonstrating that SpHL-DOX-Fol could be considered a promising drug delivery strategy for the treatment of FR+ breast tumors.


Asunto(s)
Ácido Fólico , Liposomas , Ácido Fólico/farmacología , Doxorrubicina/farmacología , Doxorrubicina/uso terapéutico , Sistemas de Liberación de Medicamentos , Concentración de Iones de Hidrógeno , Línea Celular Tumoral
3.
Pharmaceutics ; 14(11)2022 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-36365075

RESUMEN

Exosome-liposome hybrid nanocarriers containing chemotherapeutic agents have been developed to enhance drug delivery, improve the efficacy of the treatment of metastatic cancer, and overcome chemoresistance in cancer therapy. Thus, the objectives of this study were to investigate the toxicological profiles of exosomes fused with long-circulating and pH-sensitive liposomes containing doxorubicin (ExoSpHL-DOX) in healthy mice and the antitumor activity of ExoSpHL-DOX in Balb/c female mice bearing 4T1 breast tumors. The acute toxicity was determined by evaluating the mortality and morbidity of the animals and conducting hematological, biochemical, and histopathological analyses after a single intravenous administration of ExoSpHL-DOX. The results of the study indicated that the ExoSpHL-DOX treatment is less toxic than the free doxorubicin (DOX) treatment. ExoSpHL-DOX showed no signs of nephrotoxicity, even at the highest dose of DOX, indicating that the hybrid nanosystem may alter the distribution of DOX and reduce the kidney damage. Regarding the antitumor activity, ExoSpHL-DOX showed an antitumor effect compared to the control group. Furthermore, the hybrid nanocarrier of tumor-derived exosomes fused with long-circulating and pH-sensitive liposomes reduced the number of metastatic foci in the lungs. These results indicate that ExoSpHL-DOX may be a promising nanocarrier for the treatment of breast cancer, reducing toxicity and inhibiting metastasis, mainly in the lungs.

4.
Pharmaceutics ; 14(2)2022 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-35214005

RESUMEN

PEGylated liposomes are largely studied as long-circulating drug delivery systems. Nevertheless, the addition of PEG can result in reduced interactions between liposomes and cells, hindering liposomal internalization into target cells. The presence of PEG on the surface of pH-sensitive liposomes is not advantageous in terms of biodistribution and tumor uptake, raising the question of whether the indiscriminate use of PEG benefits the formulation. In this study, two doxorubicin-loaded pH-sensitive liposomal formulations, PEGylated (Lip2000-DOX) or non-PEGylated (Lip-DOX), were prepared and characterized. Overall, the PEGylated and non-PEGylated liposomes showed no differences in size or morphology in Cryo-TEM image analysis. Specifically, DLS analysis showed a mean diameter of 140 nm, PDI lower than 0.2, and zeta potential close to neutrality. Both formulations showed an EP higher than 90%. With respect to drug delivery, Lip-DOX had better cellular uptake than Lip2000-DOX, suggesting that the presence of PEG reduced the amount of intracellular DOX accumulation. The antitumor activities of free-DOX and both liposomal formulations were evaluated in 4T1 breast tumor-bearing BALB/c mice. The results showed that Lip-DOX was more effective in controlling tumor growth than other groups, inhibiting tumor growth by 60.4%. Histological lung analysis confirmed that none of the animals in the Lip-DOX group had metastatic foci. These results support that pH-sensitive liposomes have interesting antitumor properties and may produce important outcomes without PEG.

5.
Biomed Pharmacother ; 144: 112317, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34634556

RESUMEN

Irinotecan (IRN) is a semisynthetic derivative of camptothecin that acts as a topoisomerase I inhibitor. IRN is used worldwide for the treatment of several types of cancer, including colorectal cancer, however its use can lead to serious adverse effects, as diarrhea and myelosuppression. Liposomes are widely used as drug delivery systems that can improve chemotherapeutic activity and decrease side effects. Liposomes can also be pH-sensitive to release its content preferentially in acidic environments, like tumors, and be surface-functionalized for targeting purposes. Herein, we developed a folate-coated pH-sensitive liposome as a drug delivery system for IRN to reach improved tumor therapy without potential adverse events. Liposomes were prepared containing IRN and characterized for particle size, polydispersity index, zeta potential, concentration, encapsulation, cellular uptake, and release profile. Antitumor activity was investigated in a murine model of colorectal cancer, and its toxicity was evaluated by hematological/biochemical tests and histological analysis of main organs. The results showed vesicles smaller than 200 nm with little dispersion, a surface charge close to neutral, and high encapsulation rate of over 90%. The system demonstrated prolonged and sustained release in pH-dependent manner with high intracellular drug delivery capacity. Importantly, the folate-coated pH-sensitive formulation had significantly better antitumor activity than the pH-dependent system only or the free drug. Tumor tissue of IRN-containing groups presented large areas of necrosis. Furthermore, no evidence of systemic toxicity was found for the groups investigated. Thus, our developed nanodrug IRN delivery system can potentially be an alternative to conventional colorectal cancer treatment.


Asunto(s)
Neoplasias Colorrectales/tratamiento farmacológico , Ácido Fólico/metabolismo , Irinotecán/administración & dosificación , Lípidos/química , Inhibidores de Topoisomerasa I/administración & dosificación , Animales , Línea Celular Tumoral , Neoplasias Colorrectales/metabolismo , Neoplasias Colorrectales/patología , Preparaciones de Acción Retardada , Composición de Medicamentos , Liberación de Fármacos , Ácido Fólico/química , Concentración de Iones de Hidrógeno , Irinotecán/química , Irinotecán/metabolismo , Liposomas , Ratones Endogámicos BALB C , Necrosis , Factores de Tiempo , Inhibidores de Topoisomerasa I/química , Inhibidores de Topoisomerasa I/metabolismo , Carga Tumoral/efectos de los fármacos
6.
Biomed Pharmacother ; 144: 112307, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34653762

RESUMEN

Combination therapy between paclitaxel (PTX) and doxorubicin (DXR) is applied as the first-line treatment of breast cancer. Co-administration of drugs at synergistic ratio for treatment is facilitated with the use of nanocarriers, such as liposomes. However, despite the high response rate of solid tumors to this combination, a synergism of cardiotoxicity may limit the use. Thus, the objective of this work was to investigate the toxicity of long-circulating and fusogenic liposomes co-encapsulating PTX and DXR at the synergistic molar ratio (1:10) (LCFL-PTX/DXR). For this, clinical chemistry, histopathological analysis and electrocardiographic exams were performed on female Balb/c mice that received a single intravenous dose of LCFL-PTX/DXR. The results of the study indicated that the LD50 dose range (lethal dose for 50% of animals) of the LCFL-PTX/DXR treatment (28.9-34.7 mg/kg) is much higher than that found for free PTX/DXR treatment (20.8-23.1 mg/kg). In addition, liposomes promoted cardiac protection by not raising CK-MB levels in animals, keeping cardiomyocytes without injury or electrocardiographic changes. After 14 days of treatment, free PTX/DXR caused prolongation of the QRS interval when compared to LCFL-PTX/DXR treatment at the same dose (37.0 ± 5.01 ms and 30.83 ± 2.62 ms, respectively, with p = 0.017). The survival rate of animals treated with LCFL-PTX/DXR was three times higher than that of those treated with free drugs. Thus, it was established that the toxicity of LCFL-PTX/DXR is reduced compared to the combination of free PTX/DXR and this platform has advantages for the clinical treatment of breast cancer.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/toxicidad , Doxorrubicina/toxicidad , Cardiopatías/inducido químicamente , Lípidos/química , Miocitos Cardíacos/efectos de los fármacos , Paclitaxel/toxicidad , Potenciales de Acción/efectos de los fármacos , Administración Intravenosa , Animales , Protocolos de Quimioterapia Combinada Antineoplásica/administración & dosificación , Protocolos de Quimioterapia Combinada Antineoplásica/química , Cardiotoxicidad , Doxorrubicina/administración & dosificación , Doxorrubicina/química , Composición de Medicamentos , Sinergismo Farmacológico , Electrocardiografía , Femenino , Cardiopatías/metabolismo , Cardiopatías/patología , Dosificación Letal Mediana , Liposomas , Ratones Endogámicos BALB C , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Paclitaxel/administración & dosificación , Paclitaxel/química
7.
Biomed Pharmacother ; 142: 112000, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34426249

RESUMEN

The main goal of this study is to evaluate the efficacy of the paclitaxel (PTX) drug formulated with a liposomal nanosystem (L-PTX) in a peritoneal carcinomatosis derived from ovarian cancer. In vitro cell viability studies with the human ovarian cancer line A2780 showed a 50% decrease in the inhibitory concentration for L-PTX compared to free PTX. A2780 cells treated with the L-PTX formulation demonstrated a reduced capacity to form colonies in comparison to those treated with PTX. Cell death following L-PTX administration hinted at apoptosis, with most cells undergoing initial apoptosis. A2780 cells exhibited an inhibitory migration profile when analyzed by Wound Healing and real-time cell analysis (xCELLigence) methods after L-PTX administration. This inhibition was related to decreased expression of the zinc finger E-box-binding homeobox 1 (ZEB1) and transforming growth factor 2 (TGF-ß2) genes. In vivoL-PTX administration strongly inhibited tumor cell proliferation in ovarian peritoneal carcinomatosis derived from ovarian cancer, indicating higher antitumor activity than PTX. L-PTX formulation did not show toxicity in the mice model. This study demonstrated that liposomal paclitaxel formulations are less toxic to normal tissues than free paclitaxel and are more effective in inhibiting tumor cell proliferation/migration and inducing ZEB1/TGF-ß2 gene expression.


Asunto(s)
Antineoplásicos Fitogénicos/farmacología , Carcinoma Epitelial de Ovario/tratamiento farmacológico , Neoplasias Ováricas/tratamiento farmacológico , Paclitaxel/farmacología , Animales , Antineoplásicos Fitogénicos/administración & dosificación , Apoptosis/efectos de los fármacos , Carcinoma Epitelial de Ovario/genética , Carcinoma Epitelial de Ovario/patología , Muerte Celular/efectos de los fármacos , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Liposomas , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Neoplasias Ováricas/genética , Neoplasias Ováricas/patología , Paclitaxel/administración & dosificación , Neoplasias Peritoneales/tratamiento farmacológico
8.
Front Oncol ; 11: 623760, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33796461

RESUMEN

Since more than 40 years liposomes have being extensively studied for their potential as carriers of anticancer drugs. The basic principle behind their use for cancer treatment consists on the idea that they can take advantage of the leaky vasculature and poor lymphatic drainage present at the tumor tissue, passively accumulating in this region. Aiming to further improve their efficacy, different strategies have been employed such as PEGlation, which enables longer circulation times, or the attachment of ligands to liposomal surface for active targeting of cancer cells. A great challenge for drug delivery to cancer treatment now, is the possibility to trigger release from nanosystems at the tumor site, providing efficacious levels of drug in the tumor. Different strategies have been proposed to exploit the outer and inner tumor environment for triggering drug release from liposomes and are the focus of this review.

9.
Biomed Pharmacother ; 134: 110952, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33348307

RESUMEN

pH-sensitive liposomes are interesting carriers for drug-delivery, undertaking rapid bilayer destabilization in response to pH changes, allied to tumor accumulation, a desirable behavior in the treatment of cancer cells. Previously, we have shown that pH-sensitive liposomes accumulate in tumor tissues of mice, in which an acidic environment accelerates drug delivery. Ultimately, these formulations can be internalized by tumor cells and take the endosome-lysosomal route. However, the mechanism of doxorubicin release and intracellular traffic of pH-sensitive liposomes remains unclear. To investigate the molecular mechanisms underlying the intracellular release of doxorubicin from pH-sensitive liposomes, we followed HeLa cells viability, internalization, intracellular trafficking, and doxorubicin's intracellular delivery mechanisms from pH-sensitive (SpHL-DOX) and non-pH-sensitive (nSpHL-DOX) formulations. We found that SpHL-DOX has faster internalization kinetics and intracellular release of doxorubicin, followed by strong nuclear accumulation compared to nSpHL-DOX. The increased nuclear accumulation led to the activation of cleaved caspase-3, which efficiently induced apoptosis. Remarkably, we found that chloroquine and E64d enhanced the cytotoxicity of SpHL-DOX. This knowledge is paramount to improve the efficiency of pH-sensitive liposomes or to be used as a rational strategy for developing new formulations to be applied in vivo.


Asunto(s)
Antibióticos Antineoplásicos/farmacología , Doxorrubicina/farmacología , Sistemas de Liberación de Medicamentos/métodos , Liposomas/química , Animales , Apoptosis/efectos de los fármacos , Caspasa 3/metabolismo , Supervivencia Celular/efectos de los fármacos , Cloroquina/farmacología , Composición de Medicamentos , Células HeLa , Humanos , Concentración de Iones de Hidrógeno , Espacio Intracelular/metabolismo , Leucina/análogos & derivados , Leucina/farmacología , Ratones
10.
Nanomedicine (Lond) ; 15(28): 2753-2770, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33179587

RESUMEN

Aim: To investigate the effect of liposomes containing the classical cytotoxic drugs paclitaxel and doxorubicin (Lipo-Pacli/Dox), against a metastatic breast cancer model. We also investigated if Lipo-Pacli/Dox was capable of reverting the tolerogenic environment of metastatic lesions. Materials & methods: Immunogenic cell death induction by the Pacli/Dox combination was assessed in vitro. Antitumor activity and in vivo safety of Lipo-Pacli/Dox were evaluated using a 4T1 breast cancer mouse model Results: Lipo-Pacli/Dox, with a size of 189 nm and zeta potential of -5.01 mV, promoted immune system activation and partially controlled the progression of pulmonary metastasis. Conclusion: Lipo-Pacli/Dox was useful to control both primary tumor and lung metastasis in breast cancer (4T1) mice model. Additionally, Lipo-Pacli/Dox acts as an immunological modulator for this metastatic breast cancer model.


Asunto(s)
Liposomas , Neoplasias Pulmonares , Animales , Antibióticos Antineoplásicos , Línea Celular Tumoral , Doxorrubicina , Neoplasias Pulmonares/tratamiento farmacológico , Linfocitos , Ratones , Ratones Endogámicos BALB C , Paclitaxel , Pronóstico
11.
Colloids Surf B Biointerfaces ; 188: 110760, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-31951929

RESUMEN

Simple size observations of 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy(polyethyleneglycol)-2000] (DSPE-mPEG2000) polymeric micelles (PM) with different compositions including or not paclitaxel (PTX) are unable to evidence changes on the nanocarrier structure. In such system a detailed characterization using highly sensitive techniques such as X-ray scattering and asymmetric flow field flow fractionation coupled to multi-angle laser light scattering and dynamic light scattering (AF4-MALS-DLS) is mandatory to observe effects that take place by the addition of PTX and/or more lipid-polymer at PM, leading to complex changes on the structure of micelles, as well as in their supramolecular organization. SAXS and AF4-MALS-DLS suggested that PM can be found in the medium separately and highly organized, forming clusters of PM in the latter case. SAXS fitted parameters showed that adding the drug does not change the average PM size since the increase in core radius is compensated by the decrease in shell radius. SAXS observations indicate that PEG conformation takes place, changing from brush to mushroom depending on the PM composition. These findings directly reflect in in vivo studies of blood clearance that showed a longer circulation time of blank PM when compared to PM containing PTX.


Asunto(s)
Paclitaxel/sangre , Fosfatidiletanolaminas/sangre , Polietilenglicoles/metabolismo , Animales , Cápsulas/química , Cápsulas/metabolismo , Ratones , Micelas , Estructura Molecular , Paclitaxel/química , Fosfatidiletanolaminas/química , Polietilenglicoles/química , Dispersión del Ángulo Pequeño , Difracción de Rayos X
12.
Curr Drug Deliv ; 16(9): 829-838, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31622204

RESUMEN

BACKGROUND: The co-encapsulation of paclitaxel (PTX) and doxorubicin (DXR) in liposomes has the potential to offer pharmacokinetic and pharmacodynamic advantages, providing delivery of both drugs to the tumor at the ratio required for synergism. OBJECTIVE: To prepare and characterize long-circulating and fusogenic liposomes co-encapsulating PTX and DXR in the 1:10 molar ratio (LCFL-PTX/DXR). METHODS: LCFL-PTX/DXR was prepared by the lipid film formation method. The release of PTX and DXR from liposomes was performed using a dialysis method. Studies of cytotoxicity, synergism, and cellular uptake were also carried out. RESULTS: The encapsulation percentage of PTX and DXR was 74.1 ± 1.8 % and 89.6 ± 12.3%, respectively, and the mean diameter of the liposomes was 244.4 ± 28.1 nm. The vesicles remained stable for 30 days after their preparation. The drugs were simultaneously released from vesicles during 36 hours, maintaining the drugs combination in the previously established ratio. Cytotoxicity studies using 4T1 breast cancer cells showed lower inhibitory concentration 50% (IC50) value for LCFL-PTX/DXR treatment (0.27 ± 0.11 µm) compared to the values of free drugs treatment. In addition, the combination index (CI) assessed for treatment with LCFL-PTX/DXR was equal to 0.11 ± 0.04, showing strong synergism between the drugs. Cell uptake studies have confirmed that the molar ratio between PTX and DXR is maintained when the drugs are administered in liposomes. CONCLUSION: It was possible to obtain LCFL-PTX/DXR suitable for intravenous administration, capable of releasing the drugs in a fixed synergistic molar ratio in the tumor region.


Asunto(s)
Antibióticos Antineoplásicos/administración & dosificación , Antineoplásicos Fitogénicos/administración & dosificación , Protocolos de Quimioterapia Combinada Antineoplásica/administración & dosificación , Neoplasias de la Mama/tratamiento farmacológico , Doxorrubicina/administración & dosificación , Paclitaxel/administración & dosificación , Animales , Antibióticos Antineoplásicos/química , Antineoplásicos Fitogénicos/química , Protocolos de Quimioterapia Combinada Antineoplásica/química , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Doxorrubicina/química , Liberación de Fármacos , Liposomas , Ratones , Paclitaxel/química
13.
Photodiagnosis Photodyn Ther ; 28: 210-215, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31454712

RESUMEN

BACKGROUND: In the Americas, one of the main causative species of cutaneous leishmaniasis is Leishmania (Leishmania) amazonensis. The systemic antimonials remain the most largely used option for disease control. However, this drug has significant toxicity. The development of new alternative therapies, including the identification of effective drugs for topical treatment of cutaneous leishmaniasis, is of utmost interest. In this sense, photodynamic therapy emerges as a new strategy. The aim of this study was to develop the chloroaluminum phthalocyanine-loaded liposome, characterize it, and evaluate its stability and efficacy in the topical treatment of cutaneous leishmaniasis caused by L. (L.) amazonensis. METHODS: Liposomes composed of egg phosphatidylcholine were prepared by Bangham's method. Storage stability of phthalocyanine-loaded liposomes was evaluated at 30 and 60 days after preparation. For the in vivo evaluation, the animals were infected with L. (L.) amazonensis and divided into groups: chloroaluminium phthalocyanine-loaded liposome, blank liposome, meglumine antimoniate (200 mgSb+5/Kg/day), and control. The lesion size was determined weekly after the beginning of the treatment. Upon completion, parasites were recovered from the skin lesion and spleen and evaluated by limiting dilution assay. RESULTS: Chloroaluminum phthalocyanine-loaded liposomes were stable and showed adequate characteristics for topical administration. The topical chloroaluminum phthalocyanine-loaded liposome was as effective as systemic pentavalent antimony in reducing the parasitic load in the lesion and spleen in infected animals. CONCLUSIONS: The present study showed that photodynamic therapy with chloroaluminum phthalocyanine-loaded liposomes is a promising strategy for the treatment of American cutaneous leishmaniasis caused by L. (L.) amazonensis.


Asunto(s)
Antimonio/administración & dosificación , Indoles/administración & dosificación , Leishmaniasis Cutánea/tratamiento farmacológico , Compuestos Organometálicos/administración & dosificación , Fotoquimioterapia/métodos , Fármacos Fotosensibilizantes/administración & dosificación , Administración Tópica , Animales , Liposomas , Mesocricetus , Ratones Endogámicos BALB C , Bazo/parasitología
14.
Biomed Pharmacother ; 118: 109323, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31400669

RESUMEN

Long circulating pH-sensitive liposomes have been shown to effectively deliver doxorubicin (DOX) to tumors and reduce its toxic effects. Folic acid receptors are upregulated in a wide variety of solid, epithelial tumors, including breast cancer. In order to improve liposomal endocytosis and antitumor activity, folic acid has been added to nanoparticles surfaces to exploit overexpression of folate receptors in tumor cells. The purpose of this study was to evaluate the antitumor activity in vitro and in vivo of long circulating pH-sensitive folate-coated DOX-loaded liposomes (SpHL-DOX-Fol) in a 4T1 breast cancer model system in vitro and in vivo. Biodistribution studies were performed and in vivo electrocardiographic parameters were evaluated. A higher tumor uptake for radiolabeled SpHL-Fol (99mTc-SpHL-Fol) 4 h after intravenous administration was observed in comparision with non-folate-coated liposomes (99mTc-SpHL). Antitumor activity showed that SpHL-DOX-Fol treatment led to a 68% growth arrest and drastically reduce pulmonary metastasis foci. Additionally, eletrocardiographic parameters analysis revealed no dispersion in the QT and QTc interval was observed in liposomal treated mice. In summary, this novel multifunctional nanoplatform deomonstrated higher tumor uptake and antitumor activity. SpHL-DOX-Fol represents a drug delivery platform to improve DOX tumor delivery and reduce dose-limiting toxicity.


Asunto(s)
Neoplasias de la Mama/tratamiento farmacológico , Doxorrubicina/uso terapéutico , Ácido Fólico/química , Animales , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Neoplasias de la Mama/diagnóstico por imagen , Neoplasias de la Mama/patología , Neoplasias de la Mama/ultraestructura , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Modelos Animales de Enfermedad , Doxorrubicina/sangre , Doxorrubicina/farmacología , Femenino , Concentración de Iones de Hidrógeno , Liposomas , Ratones Endogámicos BALB C , Metástasis de la Neoplasia , Distribución Tisular/efectos de los fármacos
15.
Mol Pharm ; 16(8): 3477-3488, 2019 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-31257891

RESUMEN

Paclitaxel (PTX) is a microtubule-stabilizing agent widely used to treat breast cancer. Nevertheless, the low solubility of the drug and the side effects of commercial formulations available limit its clinical use. In this way, our group recently described the preparation of PTX-loaded folate-coated long-circulating and pH-sensitive liposomes (SpHL-folate-PTX). Therefore, a proof-of-concept study was designed in order to demonstrate the feasibility of SpHL-folate-PTX against breast tumor cell line MDA-MB-231. Cellular uptake of the liposomes and PTX was evaluated. Apoptosis and cell cycle were analyzed by flow cytometry. In vivo antitumor activity was carried out in MDA-MB-231 tumor-bearing BALB/c nude mice. Cellular uptake assay showed a high cell delivery of PTX by SpHL-folate-PTX, which leads to superior cytotoxicity and activation of apoptosis pathways. The SpHL-folate-PTX treatment induces an expressive increase of cells in the G0/G1 phase compared to free PTX and SpHL-PTX (without folate). In vivo studies showed a significant reduction in the tumor growth and a lower uptake of a radiopharmaceutical in the scintigraphic images for the SpHL-folate-PTX group, suggesting its higher efficacy compared with free PTX and SpHL-PTX. Histomorphometric analyses demonstrated an increase in necrosis and inflammation areas in animals treated with SpHL-folate-PTX. A decrease in the proliferative cells and a higher percentage of apoptotic cells were observed by immunohistochemical analyses after the treatment with SpHL-folate-PTX. Therefore, the data confirmed the potential of SpHL-folate-PTX as an alternative antitumor therapy, especially for breast cancer.


Asunto(s)
Antineoplásicos Fitogénicos/administración & dosificación , Neoplasias de la Mama/tratamiento farmacológico , Composición de Medicamentos/métodos , Ácido Fólico/química , Paclitaxel/administración & dosificación , Animales , Antineoplásicos Fitogénicos/química , Antineoplásicos Fitogénicos/farmacocinética , Apoptosis/efectos de los fármacos , Neoplasias de la Mama/diagnóstico por imagen , Neoplasias de la Mama/patología , Línea Celular Tumoral , Femenino , Puntos de Control de la Fase G1 del Ciclo Celular/efectos de los fármacos , Humanos , Concentración de Iones de Hidrógeno , Liposomas , Ratones , Paclitaxel/química , Paclitaxel/farmacocinética , Prueba de Estudio Conceptual , Cintigrafía , Solubilidad , Ensayos Antitumor por Modelo de Xenoinjerto
16.
Pharmaceutics ; 11(4)2019 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-30979090

RESUMEN

BACKGROUND: Associating paclitaxel (PTX) to doxorubicin (DXR) is one of the main chemotherapy strategies for breast cancer (BC) management. Protocols currently available consist in administering both drugs on their maximum tolerated dose, not taking into account the possible differences in efficacy due to their combination ratio. In the present study, the short and long-term cytotoxic effects as well as migratory effects of PTX, DXR, and its combinations at 10:1; 1:1 and 1:10 PTX:DXR molar ratios either free or co-encapsulated in liposomes were evaluated against three human BC cell lines (MDA-MB-231, MCF-7, and SKBR-3). METHOD: The MTT assay was used to screen for synergy or antagonism between PTX and DXR and the combination index value was calculated using the CalcuSyn software. Nuclear morphological alterations were evaluated by staining the cells with Hoescht 33342. The investigation of senescence and clonogenicity of BC cell lines exposed to different treatments was also studied. In addition, the ability of these cells to migrate was assessed. RESULTS: Taken together, the results presented herein allow us to suggest that there is no benefit in enhancing the PTX concentration above that of DXR in the combination for any of the three cell lines tested. CONCLUSION: The developed liposomes co-encapsulating PTX and DXR in different molar ratios retained the biological properties of the mixture of free drugs and are valuable for planning new therapeutic strategies.

17.
Drug Deliv Transl Res ; 9(1): 123-130, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30187353

RESUMEN

Liposomes are lipid vesicles widely used as nanocarriers in targeted drug delivery systems for therapeutic and/or diagnostic purposes. A strategy to prolong the blood circulation time of the liposomes includes the addition of a hydrophilic polymer polyethylene glycol (PEG) moiety onto the surface of the vesicle. Several studies claim that liposome PEGylation by a single chain length or a combination of PEG with different chain lengths may alter the liposomes' pharmacokinetic properties. Therefore, the purpose of this study was to evaluate the influence of PEG on the biodistribution of pH-sensitive liposomes in a tumor-bearing animal model. Three liposomal formulations (PEGylated or not) were prepared and validated to have a similar mean diameter, monodisperse distribution, and neutral zeta potential. The pharmacokinetic properties of each liposome were evaluated in healthy animals, while the biodistribution and scintigraphic images were evaluated in tumor-bearing mice. High tumor-to-muscle ratios were not statistically different between the PEGylated and non-PEGylated liposomes. While PEGylation is a well-established strategy for increasing the blood circulation of nanostructures, in our study, the use of polymer coating did not result in a better in vivo profile. Further studies must be carried out to confirm the feasibility of the non-PEGylated pH-sensitive liposomes for tumor treatment.


Asunto(s)
Neoplasias de la Mama/fisiopatología , Polietilenglicoles/farmacocinética , Tecnecio/química , Animales , Tiempo de Circulación Sanguínea , Línea Celular Tumoral , Sistemas de Liberación de Medicamentos , Femenino , Humanos , Concentración de Iones de Hidrógeno , Liposomas , Tasa de Depuración Metabólica , Ratones , Ratones Endogámicos BALB C , Trasplante de Neoplasias , Polietilenglicoles/administración & dosificación , Polietilenglicoles/química , Distribución Tisular
18.
Biomed Pharmacother ; 109: 1728-1739, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30551427

RESUMEN

To associate paclitaxel (PTX) with doxorubicin (DXR) is one of the main chemotherapy strategies for breast cancer (BC) management. Despite the high response rates for this combination, it presents a cardiotoxic synergism, attributed to pharmacokinetic interactions between PTX and both DXR and its metabolite, doxorubicinol. One of the main strategies to minimize the cardiotoxicity of the combination is to extend the interval of time between DXR and PTX administration. However, it has been previously suggested that their co-administration leads to better efficacy compared to their sequential administration. In the present study, we investigated different molar ratio combinations of PTX:DXR (10:1; 1:1, and 1:10) against the 4T1 murine breast cancer cell line and concluded that there is no benefit of enhancing PTX concentration above that of DXR on the combination. Therefore, we obtained a long-circulating and fusogenic liposomal formulation co-encapsulating PTX and DXR (LCFL-PTX/DXR) at a molar ratio of 1:10, respectively, which maintained the in vitro biological activity of the combination. This formulation was investigated for its antitumor activity and toxicity in Balb/c mice bearing 4T1 breast tumor, and compared to treatments with free PTX, free DXR, and the mixture of free PTX:DXR at 1:10 molar ratio. The higher tumor inhibition ratios were observed for the treatments with free and co-encapsulated PTX:DXR in liposomes (66.87 and 66.52%, respectively, P>0.05) as compared to the control. The great advantage of the treatment with LCFL-PTX/DXR was its improved cardiac toxicity profile. While degeneration was observed in the hearts of all animals treated with the free PTX:DXR combination, no signs of cardiac toxicity were observed for animals treated with the LCFL-PTX/DXR. Thus, LCFL-PTX/DXR enables the co-administration of PTX and DXR, and might be considered valuable for breast cancer management.


Asunto(s)
Antibióticos Antineoplásicos/administración & dosificación , Antineoplásicos Fitogénicos/administración & dosificación , Neoplasias de la Mama/tratamiento farmacológico , Doxorrubicina/administración & dosificación , Portadores de Fármacos/administración & dosificación , Paclitaxel/administración & dosificación , Animales , Antibióticos Antineoplásicos/toxicidad , Antineoplásicos Fitogénicos/toxicidad , Neoplasias de la Mama/patología , Cardiotoxicidad/patología , Relación Dosis-Respuesta a Droga , Doxorrubicina/toxicidad , Portadores de Fármacos/toxicidad , Femenino , Humanos , Liposomas , Células MCF-7 , Ratones , Ratones Endogámicos BALB C , Paclitaxel/toxicidad , Distribución Aleatoria , Carga Tumoral/efectos de los fármacos , Carga Tumoral/fisiología
19.
Toxicol Appl Pharmacol ; 352: 162-169, 2018 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-29864484

RESUMEN

Doxorubicin (DOX) is widely used in cancer treatment, however, the use of this drug is often limited due to its cardiotoxic side effects. In order to avoid these adverse effects, the encapsulation of DOX into nanosystems has been used in the last decades. In this context, pH-sensitive liposomes have been shown promising for delivering cytotoxic agents into tumor cells, however, the lack of information about in vivo toxicity of this nanocarrier has impaired translational studies. Therefore, the aim of this work was to investigate the acute toxicity and cardiotoxicity of DOX-loading pH-sensitive liposomes (SpHL-DOX). To achieve this, female BALB/c mice, after intravenous administration, were monitored by means of clinical, laboratory, histopathological and electrocardiographic (ECG) analyses. Results indicate that SpHL was able to prevent renal toxicity and the hepatic injury was less extensive than free DOX. In addition, lower body weight loss was associated with less ECG QT interval prolongation to animals receiving SpHL-DOX (14.6 ±â€¯5.2%) compared to animals receiving free DOX (35.7 ±â€¯4.0%) or non-pH-sensitive liposomes (nSpHL-DOX) (47.0 ±â€¯9.8%). These results corroborate with SpHL-DOX biodistribution studies published by our group. In conclusion, the SpHL-DOX showed less toxic effects on mice compared to free DOX or nSpHL-DOX indicating that SpHL-DOX is a promising strategy to reduce the serious cardiotoxic effects of DOX.


Asunto(s)
Antibióticos Antineoplásicos/toxicidad , Enfermedad Hepática Inducida por Sustancias y Drogas/prevención & control , Doxorrubicina/toxicidad , Evaluación Preclínica de Medicamentos , Cardiopatías/prevención & control , Enfermedades Renales/prevención & control , Animales , Antibióticos Antineoplásicos/administración & dosificación , Antibióticos Antineoplásicos/química , Enfermedad Hepática Inducida por Sustancias y Drogas/etiología , Enfermedad Hepática Inducida por Sustancias y Drogas/patología , Preparaciones de Acción Retardada , Doxorrubicina/administración & dosificación , Doxorrubicina/química , Composición de Medicamentos , Femenino , Corazón/efectos de los fármacos , Cardiopatías/inducido químicamente , Cardiopatías/patología , Concentración de Iones de Hidrógeno , Inyecciones Intravenosas , Riñón/efectos de los fármacos , Riñón/patología , Enfermedades Renales/inducido químicamente , Enfermedades Renales/patología , Liposomas , Hígado/efectos de los fármacos , Hígado/patología , Ratones Endogámicos BALB C , Miocardio/patología
20.
Eur J Pharm Sci ; 119: 112-120, 2018 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-29627623

RESUMEN

trans-Aconitic acid (TAA) is the main constituent of the leaves from the medicinal plant Echinodorus grandiflorus, used to treat different inflammatory diseases. TAA induces a potent but short-lasting biological response, credited to its high polarity and unfavorable pharmacokinetics. Here we developed, characterized and evaluated the anti-inflammatory activity of mucoadhesive microspheres loaded with TAA. Seven batches of mucoadhesive microspheres were prepared by the emulsification/solvent evaporation method, employing different proportions of TAA and Carbopol 934 or/and hydroxypropylmethylcellulose. All batches were characterized for their particle medium size, polydispersity index and entrapment percentage. The batch coded F3c showed highest entrapment percentage and was characterized by infrared spectroscopy (ATR-FTIR), scanning electron microscopy (SEM), differential scanning calorimetry (DSC), thermogravimetric analyses (TGA) and zeta potential. The anti-inflammatory activity of F3c was assessed in a model of acute arthritis induced by injection of LPS in the knee joint of Swiss mice. The granulometric analyses indicated heterogeneous size distribution for F3c. SEM characterization indicated microspheres with slightly irregular shape and rough surface. Results from ATR-FTIR and thermal analyses (DSC and TGA) pointed out absence of incompatibility between the components of the formulation; thermal events related to the constituents were isolated and randomly located, suggesting amorphous distribution of TAA in the formulation matrix. The zeta potential of the formulations varied from -30 to -34 mV, which may contribute to good stability. When given orally to mice, F3c induced a prolonged anti-inflammatory response by reducing total cell count and neutrophilic accumulation in the joint cavity even when given 48 and 36 h before the stimulus, respectively, in comparison to free TAA (up to 24 and 6 h, respectively). Therefore, the encapsulation of TAA in mucoadhesive microspheres provided its sustained release, indicating that this drug delivery system is a potential agent to treat inflammatory diseases by regulating cell influx.


Asunto(s)
Ácido Aconítico/administración & dosificación , Antiinflamatorios no Esteroideos/administración & dosificación , Artritis Experimental/tratamiento farmacológico , Ácido Aconítico/uso terapéutico , Enfermedad Aguda , Adhesividad , Animales , Antiinflamatorios no Esteroideos/uso terapéutico , Artritis Experimental/inducido químicamente , Artritis Experimental/inmunología , Articulación de la Rodilla/efectos de los fármacos , Articulación de la Rodilla/inmunología , Recuento de Leucocitos , Lipopolisacáridos , Masculino , Ratones , Microesferas , Membrana Mucosa/química , Neutrófilos/efectos de los fármacos , Neutrófilos/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...