Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Invest New Drugs ; 38(4): 1044-1055, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-31781904

RESUMEN

Gliomas account for nearly 70% of the central nervous system tumors and present a median survival of approximately 12-17 months. Studies have shown that administration of novel natural antineoplastic agents is been highly effective for treating gliomas. This study was conducted to investigate the antitumor potential (in vitro and in vivo) of Miconia chamissois Naudin for treating glioblastomas. We investigated the cytotoxicity of the chloroform partition and its sub-fraction in glioblastoma cell lines (GAMG and U251MG) and one normal cell line of astrocytes. The fraction showed cytotoxicity and was selective for tumor cells. Characterization of this fraction revealed a single compound, Matteucinol, which was first identified in the species M. chamissois. Matteucinol promoted cell death via intrinsic apoptosis in the adult glioblastoma lines. In addition, Matteucinol significantly reduced the migration, invasion, and clonogenicity of the tumor cells. Notably, it also reduced tumor growth and angiogenesis in vivo. Moreover, this agent showed synergistic effects with temozolomide, a chemotherapeutic agent commonly used in clinical practice. Our study demonstrates that Matteucinol from M chamissois is a promising compound for the treatment of glioblastomas and may be used along with the existing chemotherapeutic agents for more effective treatment.


Asunto(s)
Antineoplásicos Fitogénicos/uso terapéutico , Cromonas/uso terapéutico , Glioblastoma/tratamiento farmacológico , Animales , Antineoplásicos Fitogénicos/aislamiento & purificación , Antineoplásicos Fitogénicos/farmacología , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Embrión de Pollo , Membrana Corioalantoides/irrigación sanguínea , Membrana Corioalantoides/efectos de los fármacos , Cromonas/aislamiento & purificación , Cromonas/farmacología , Glioblastoma/irrigación sanguínea , Humanos , Melastomataceae , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Neovascularización Patológica/tratamiento farmacológico , Extractos Vegetales , Hojas de la Planta
2.
Exp Ther Med ; 16(2): 557-566, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-30112023

RESUMEN

A large number of classic antineoplastic agents are derived from plants. Euphorbia tirucalli L. (Euphorbiaceae) is a subtropical and tropical plant, used in Brazilian folk medicine against many diseases, including cancer, yet little is known about its true anticancer properties. The present study evaluated the antitumor effect of the tetracyclic triterpene alcohol, euphol, the main constituent of E. tirucalli in a panel of 73 human cancer lines from 15 tumor types. The biological effect of euphol in pancreatic cells was also assessed. The combination index was further used to explore euphol interactions with standard drugs. Euphol showed a cytotoxicity effect against several cancer cell lines (IC50 range, 1.41-38.89 µM), particularly in esophageal squamous cell (11.08 µM) and pancreatic carcinoma cells (6.84 µM), followed by prostate, melanoma, and colon cancer. Cytotoxicity effects were seen in all cancer cell lines, with more than half deemed highly sensitive. Euphol inhibited proliferation, motility and colony formation in pancreatic cancer cells. Importantly, euphol exhibited synergistic interactions with gemcitabine and paclitaxel in pancreatic and esophageal cell lines, respectively. To the best of our knowledge, this study constitutes the largest in vitro screening of euphol efficacy on cancer cell lines and revealed its in vitro anti-cancer properties, particularly in pancreatic and esophageal cell lines, suggesting that euphol, either as a single agent or in combination with conventional chemotherapy, is a potential anti-cancer drug.

3.
J Strength Cond Res ; 30(2): 311-9, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23604000

RESUMEN

Biomarkers of inflammation, muscle damage, and oxidative stress after high-intensity exercise have been described previously; however, further understanding of their role in the postexercise recovery period is necessary. Because these markers have been implicated in cell signaling, they may be specifically related to the training adaptations induced by high-intensity exercise. Thus, a clear model showing their responses to exercise may be useful in characterizing the relative recovery status of an athlete. The purpose of this study was twofold: (a) to investigate the time course of markers of muscle damage and inflammation in the blood from 3 to 72 hours after combined training exercises and (b) to investigate indicators of oxidative stress and damage associated with increased reactive oxygen species production during high-intensity exercise in elite athletes. Nineteen male athletes performed a combination of high-intensity aerobic and anaerobic training exercises. Samples were acquired immediately before and at 3, 6, 12, 24, 48, and 72 hours after exercise. The appearance and clearance of creatine kinase and lactate dehydrogenase in the blood occurred faster than previous studies have reported. The neutrophil/lymphocyte ratio summarizes the mobilization of 2 leukocyte subpopulations in a single marker and may be used to predict the end of the postexercise recovery period. Further analysis of the immune response using serum cytokines indicated that high-intensity exercise performed by highly trained athletes only generated inflammation that was localized to the skeletal muscle. Biomarkers are not a replacement for performance tests, but when used in conjunction, they may offer a better indication of metabolic recovery status. Therefore, the use of biomarkers can improve a coach's ability to assess the recovery period after an exercise session and to establish the intensity of subsequent training sessions.


Asunto(s)
Ejercicio Físico/fisiología , Esfuerzo Físico/fisiología , Adulto , Biomarcadores/metabolismo , Catalasa/sangre , Creatina Quinasa/sangre , Citocinas/sangre , Humanos , L-Lactato Deshidrogenasa/sangre , Recuento de Leucocitos , Masculino , Neutrófilos/metabolismo , Recuperación de la Función/fisiología
4.
Diab Vasc Dis Res ; 11(2): 110-7, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24553253

RESUMEN

The development of cardiovascular complications in patients with diabetes is often associated with an imbalance between reactive oxygen species and antioxidant systems. This imbalance can contribute to high cardiac collagen content, which increases cross-linking and the stiffness of the myocardium. In this study, the protective effect of phaseolamin against damage under oxidative stress and collagen deposition in the cardiac tissue in association with diabetes was evaluated. Non-diabetic and diabetic animals were distributed into groups and treated for 20 days with commercial phaseolamin. The phaseolamin treatment increased total antioxidant activity but reduced the following in diabetic rats: (a) hyperglycaemic state, (b) catalase and superoxide dismutase activity and (c) tissue damage caused by lipid peroxidation. Additionally, the phaseolamin treatment attenuated the collagen levels compared to non-treated diabetic rats. Thus, the short-term anti-hyperglycaemic effect of the phaseolamin treatment may prevent the initial changes caused by oxidative stress and the deposition of collagen, as well as reduce the incidence of heart complications.


Asunto(s)
Colágeno/metabolismo , Diabetes Mellitus Experimental , Estrés Oxidativo/efectos de los fármacos , Lectinas de Plantas/farmacología , Animales , Antioxidantes/metabolismo , Glucemia/metabolismo , Diabetes Mellitus Experimental/inducido químicamente , Modelos Animales de Enfermedad , Corazón/efectos de los fármacos , Masculino , Ratas , Ratas Wistar , Estreptozocina
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...