Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Tumour Biol ; 36(5): 3325-36, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25528215

RESUMEN

Breast cancer is one of the most prevalent cancer types among women. The use of magnetic fluids for specific delivery of drugs represents an attractive platform for chemotherapy. In our previous studies, it was demonstrated that maghemite nanoparticles coated with rhodium (II) citrate (Magh-Rh2Cit) induced in vitro cytotoxicity and in vivo antitumor activity, followed by intratumoral administration in breast carcinoma cells. In this study, our aim was to follow intravenous treatment to evaluate the systemic antitumor activity and toxicity induced by these formulations in Balb/c mice bearing orthotopic 4T1 breast carcinoma. Female Balb/c mice were evaluated with regard to toxicity of intravenous treatments through analyses of hemogram, serum levels of alanine aminotransferase, iron, and creatinine and liver, kidney, and lung histology. The antitumor activity of rhodium (II) citrate (Rh2Cit), Magh-Rh2Cit, and maghemite nanoparticles coated with citrate (Magh-Cit), used as control, was evaluated by tumor volume reduction, histology, and morphometric analysis. Magh-Rh2Cit and Magh-Cit promoted a significant decrease in tumor area, and no experimental groups presented hematotoxic effects or increased levels of serum ALT and creatinine. This observation was corroborated by the histopathological examination of the liver and kidney of mice. Furthermore, the presence of nanoparticles was verified in lung tissue with no morphological changes, supporting the idea that our nanoformulations did not induce toxicity effects. No studies about the systemic action of rhodium (II) citrate-loaded maghemite nanoparticles have been carried out, making this report a suitable starting point for exploring the therapeutic potential of these compounds in treating breast cancer.


Asunto(s)
Antineoplásicos/farmacología , Compuestos Férricos/farmacología , Neoplasias Mamarias Experimentales/tratamiento farmacológico , Rodio/farmacología , Alanina Transaminasa/sangre , Animales , Femenino , Compuestos Férricos/toxicidad , Hepatocitos/patología , Riñón/fisiopatología , Glándulas Mamarias Animales/patología , Neoplasias Mamarias Experimentales/mortalidad , Neoplasias Mamarias Experimentales/patología , Ratones , Ratones Endogámicos BALB C , Nanopartículas , Rodio/toxicidad , Tasa de Supervivencia
2.
J Nanobiotechnology ; 11: 4, 2013 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-23414068

RESUMEN

BACKGROUND: Magnetic fluids containing superparamagnetic iron oxide nanoparticles represent an attractive platform as nanocarriers in chemotherapy. Recently, we developed a formulation of maghemite nanoparticles coated with rhodium (II) citrate, which resulted in in vitro cytotoxicity enhanced up to 4.6 times when compared to free rhodium (II) citrate formulation on breast carcinoma cells. In this work, we evaluate the antitumor activity and toxicity induced by these formulations in Balb/c mice bearing orthotopic 4T1 breast carcinoma. METHODS: Mice were evaluated with regard to the treatments' toxicity through analyses of hemogram, serum levels of alanine aminotransferase, iron, and creatinine; DNA fragmentation and cell cycle of bone marrow cells; and liver, kidney and lung histology. In addition, the antitumor activity of rhodium (II) citrate and maghemite nanoparticles coated with rhodium (II) citrate was verified by tumor volume reduction, histology and immunohistochemistry. RESULTS: Regarding the treatments' toxicity, no experimental groups had alterations in levels of serum ALT or creatinine, and this suggestion was corroborated by the histopathologic examination of liver and kidney of mice. Moreover, DNA fragmentation frequency of bone marrow cells was lower than 15% in all experimental groups. On the other hand, the complexes rhodium (II) citrate-functionalized maghemite and free rhodium (II) citrate led to a marked growth inhibition of tumor and decrease in CD31 and Ki-67 staining. CONCLUSIONS: In summary, we demonstrated that both rhodium (II) citrate and maghemite nanoparticles coated with rhodium (II) citrate formulations exhibited antitumor effects against 4T1 metastatic breast cancer cell line following intratumoral administration. This antitumor effect was followed by inhibition of both cell proliferation and microvascularization and by tumor tissue injury characterized as necrosis and fibrosis. Remarkably, this is the first published report demonstrating the therapeutic efficacy of maghemite nanoparticles coated with rhodium (II) citrate. This treatment prolonged the survival period of treated mice without inducing apparent systemic toxicity, which strengthens its use for future breast cancer therapeutic applications.


Asunto(s)
Antineoplásicos/farmacología , Compuestos Férricos/química , Nanopartículas de Magnetita/química , Rodio/farmacología , Alanina Transaminasa/sangre , Animales , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/patología , Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Ácido Cítrico/química , Ácido Cítrico/farmacología , Creatinina/sangre , Fragmentación del ADN/efectos de los fármacos , Femenino , Compuestos Férricos/análisis , Humanos , Inmunohistoquímica , Hierro/sangre , Antígeno Ki-67/análisis , Riñón/efectos de los fármacos , Riñón/metabolismo , Hígado/efectos de los fármacos , Hígado/metabolismo , Ratones , Ratones Endogámicos BALB C , Molécula-1 de Adhesión Celular Endotelial de Plaqueta/análisis , Rodio/química , Rayos Ultravioleta
3.
J Nanobiotechnology ; 9: 11, 2011 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-21443799

RESUMEN

BACKGROUND: Rhodium (II) citrate (Rh(2)(H(2)cit)(4)) has significant antitumor, cytotoxic, and cytostatic activity on Ehrlich ascite tumor. Although toxic to normal cells, its lower toxicity when compared to carboxylate analogues of rhodium (II) indicates (Rh(2)(H(2)cit)(4)) as a promising agent for chemotherapy. Nevertheless, few studies have been performed to explore this potential. Superparamagnetic particles of iron oxide (SPIOs) represent an attractive platform as carriers in drug delivery systems (DDS) because they can present greater specificity to tumor cells than normal cells. Thus, the association between Rh(2)(H(2)cit)(4) and SPIOs can represent a strategy to enhance the former's therapeutic action. In this work, we report the cytotoxicity of free rhodium (II) citrate (Rh(2)(H(2)cit)(4)) and rhodium (II) citrate-loaded maghemite nanoparticles or magnetoliposomes, used as drug delivery systems, on both normal and carcinoma breast cell cultures. RESULTS: Treatment with free Rh(2)(H(2)cit)(4) induced cytotoxicity that was dependent on dose, time, and cell line. The IC(50) values showed that this effect was more intense on breast normal cells (MCF-10A) than on breast carcinoma cells (MCF-7 and 4T1). However, the treatment with 50 µM Rh(2)(H(2)cit)(4)-loaded maghemite nanoparticles (Mag(h)-Rh(2)(H(2)cit)(4)) and Rh(2)(H(2)cit)(4)-loaded magnetoliposomes (Lip-Magh-Rh(2)(H(2)cit)(4)) induced a higher cytotoxicity on MCF-7 and 4T1 than on MCF-10A (p < 0.05). These treatments enhanced cytotoxicity up to 4.6 times. These cytotoxic effects, induced by free Rh(2)(H(2)cit)(4), were evidenced by morphological alterations such as nuclear fragmentation, membrane blebbing and phosphatidylserine exposure, reduction of actin filaments, mitochondrial condensation and an increase in number of vacuoles, suggesting that Rh(2)(H(2)cit)(4) induces cell death by apoptosis. CONCLUSIONS: The treatment with rhodium (II) citrate-loaded maghemite nanoparticles and magnetoliposomes induced more specific cytotoxicity on breast carcinoma cells than on breast normal cells, which is the opposite of the results observed with free Rh(2)(H(2)cit)(4) treatment. Thus, magnetic nanoparticles represent an attractive platform as carriers in Rh(2)(H(2)cit)(4) delivery systems, since they can act preferentially in tumor cells. Therefore, these nanopaticulate systems may be explored as a potential tool for chemotherapy drug development.


Asunto(s)
Antineoplásicos/uso terapéutico , Neoplasias de la Mama/tratamiento farmacológico , Carcinoma/tratamiento farmacológico , Sistemas de Liberación de Medicamentos , Nanopartículas de Magnetita/uso terapéutico , Neoplasias Mamarias Animales/tratamiento farmacológico , Rodio/uso terapéutico , Animales , Antineoplásicos/efectos adversos , Apoptosis/efectos de los fármacos , Mama/efectos de los fármacos , Mama/patología , Mama/ultraestructura , Neoplasias de la Mama/patología , Neoplasias de la Mama/ultraestructura , Carcinoma/patología , Carcinoma/ultraestructura , Línea Celular , Femenino , Humanos , Liposomas/efectos adversos , Liposomas/uso terapéutico , Nanopartículas de Magnetita/ultraestructura , Glándulas Mamarias Animales/efectos de los fármacos , Glándulas Mamarias Animales/patología , Glándulas Mamarias Animales/ultraestructura , Neoplasias Mamarias Animales/patología , Neoplasias Mamarias Animales/ultraestructura , Ratones , Rodio/efectos adversos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...