Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Curr Res Microb Sci ; 3: 100145, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35909603

RESUMEN

Trichoderma spp. are usually considered safe and normally used as biocontrol and biofertilization. Safety for human health is evaluated by several tests that detect various effects such as allergenicity, toxicity, infectivity, and pathogenicity. However, they do not evaluate the effects of the agent upon the immune system. The aim of this study was to investigate the interaction between T. stromaticum spores and mammalian cells to assess the immunomodulatory potential of the spores of this fungus. First, mouse macrophage cell line J774 and human macrophages were exposed to fungal spores and analyzed for structural features, through scanning and transmission electron microscopy. Then, various analysis were performed in human macrophages as to their effect in some functional and molecular aspects of the immune system through immunocytochemistry, flow cytometry and gene expression assays. We demonstrated that T. stromaticum spores induces autophagy and autophagy-related genes (ATGs) and downmodulate inflammatory mediators, including ROS, NLRP3, the cytokines IL-1ß, IL-18, IL-12 and IL-10, as well as TLR2, TLR4, miR-146b and miR-155, which may lead to an augmented susceptibility to pathogens. Our study shows the extension of damages the biofungicide Tricovab® can cause in the innate immune response. Further studies are necessary to elucidate other innate and adaptive immune responses and, consequently, the safety of this fungus when in contact with humans.

2.
Mol Immunol ; 141: 43-52, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34798497

RESUMEN

Although the genus Trichoderma is widely used as a biocontrol agent in crops, little is known about its potential impact on the human immune system. In mice, our group has shown that exposition to T. asperelloides spores lead to reduced neutrophil counts in the peripheral blood and in the peritoneal cavity. In addition, T. stromaticum spores produced an inflammatory infiltrate on mice lungs, reducing the levels of IFN-γ and IL-10 cytokines, reactive oxygen species, and receptors of microbial patterns. Here we demonstrate that the interaction of human peripheral neutrophils with T. stromaticum spores also leads to a reduced release of neutrophil extracellular traps (NETs) after induction with the NET-inducer agent phorbol 12-myristate 13-acetate. This interaction also reduced the expression levels of multiple microRNAs, such as miR-221, miR-222, miR-223 and miR-27a, as well as genes related to NETs, such as ELANE, MPO and PADI4. Furthermore, T. stromaticum spores affected the expression of the genes SOCS3, TLR4, CSNK2A1, GSDMD, and NFFKBIA, related to the activation of inflammatory immune responses in neutrophils. Overall, our results suggest T. stromaticum as a potential NET inhibitor and as an immunomodulatory agent. Since this fungus is used as biocontrol in crops, our findings point to the importance of advancing our knowledge on the effects of this bioagent on the human immune system. Finally, the study of the active compounds produced by the fungus is also important for the prospection of new drugs that could be used to block the exacerbation of inflammatory immune responses present in several human diseases.


Asunto(s)
Trampas Extracelulares/inmunología , Hypocreales/inmunología , Leucocitos Mononucleares/inmunología , Neutrófilos/inmunología , Esporas/inmunología , Células Cultivadas , Citocinas/inmunología , Humanos , Inmunidad/inmunología , Factores Inmunológicos/inmunología , Inflamación/inmunología , MicroARNs/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA