Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Tipo de estudio
Intervalo de año de publicación
1.
Sci Rep ; 14(1): 1954, 2024 01 23.
Artículo en Inglés | MEDLINE | ID: mdl-38263184

RESUMEN

Probiotics are widely used in agriculture including commercial beekeeping, but there is little evidence supporting their effectiveness. Antibiotic treatments can greatly distort the gut microbiome, reducing its protective abilities and facilitating the growth of antibiotic resistant pathogens. Commercial beekeepers regularly apply antibiotics to combat bacterial infections, often followed by an application of non-native probiotics advertised to ease the impact of antibiotic-induced gut dysbiosis. We tested whether probiotics affect the gut microbiome or disease prevalence, or rescue the negative effects of antibiotic induced gut dysbiosis. We found no difference in the gut microbiome or disease markers by probiotic application or antibiotic recovery associated with probiotic treatment. A colony-level application of the antibiotics oxytetracycline and tylosin produced an immediate decrease in gut microbiome size, and over the longer-term, very different and persistent dysbiotic effects on the composition and membership of the hindgut microbiome. Our results demonstrate the lack of probiotic effect or antibiotic rescue, detail the duration and character of dysbiotic states resulting from different antibiotics, and highlight the importance of the gut microbiome for honeybee health.


Asunto(s)
Oxitetraciclina , Probióticos , Abejas , Animales , Disbiosis , Antibacterianos , Tilosina
2.
BMC Vet Res ; 18(1): 52, 2022 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-35062935

RESUMEN

BACKGROUND: Honey bee colonies managed for agricultural pollination are highly dependent on human inputs, especially for disease control and supplemental nutrition. Hives are routinely fed artificial "pollen substitute" diets to compensate for insufficient nutritional forage in the environment. The aim of this study was to investigate the effects of different artificial diets in a northern California, US commercial beekeeping operation from August through February. This time period represents an extended forage dearth when supplemental nutrition is used to stimulate late winter colony growth prior to almond pollination in the early spring. A total of 144 honey bee colonies were divided into 8 feeding groups that were replicated at three apiary sites. Feeding groups received commercial diets (Global, Ultra Bee, Bulk Soft, MegaBee, AP23, Healthy Bees), a beekeeper-formulated diet (Homebrew), or a sugar negative control. Diets were analyzed for macronutrient and amino acid content then evaluated with respect to honey bee colony population size, average bee weight, nutrition-related gene expression, gut microbiota abundance, and pathogen levels. RESULTS: Replicated at three apiary sites, two pollen-containing diets (Global and Homebrew) produced the largest colonies and the heaviest bees per colony. Two diets (Bulk Soft and AP23) that did not contain pollen led to significantly larger colonies than a sugar negative control diet. Diet macronutrient content was not correlated with colony size or health biomarkers. The sum of dietary essential amino acid deficiencies relative to leucine content were correlated with average bee weight in November and colony size used for almond pollination in February. Nutrition-related gene expression, gut microbiota, and pathogen levels were influenced by apiary site, which overrode some diet effects. Regarding microbiota, diet had a significant impact on the abundance of Bifidobacterium and Gilliamella and trended towards effects on other prominent bee gut taxa. CONCLUSIONS: Multiple colony and individual bee measures are necessary to test diet efficacy since honey bee nutritional responses are complex to evaluate. Balancing essential amino acid content relative to leucine instead of tryptophan may improve diet protein efficiency ratios. Optimization of bee diets could improve feed sustainability and agricultural pollination efficiency by supporting larger, healthier honey bee colonies.


Asunto(s)
Abejas , Dieta , Microbioma Gastrointestinal , Animales , Apicultura , Biomarcadores , Dieta/veterinaria , Leucina , Azúcares
3.
Viruses ; 11(5)2019 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-31075870

RESUMEN

The strong association between Varroa destructor, deformed wing virus (DWV), and high overwintering colony losses (OCL) of honey bees is well established. Three DWV master variants (DWV-A, -B, and -C) have been described, and their role in colony mortality remains an open question. Therefore, the aim of this study is to investigate the seasonal prevalence, viral load, and changing distribution of the three DWV master variants within honey bee colonies from England, Wales, and 32 states across the United States. Here, we report that in 2016, DWV-B was prevalent (100%, n = 249) and dominant (95%) in England and Wales, compared to the US. (56%, n = 217 and 23%, respectively), where DWV-A was prevalent (83%, n = 217) and dominant (63%). DWV-C was regularly detected in low viral loads (<1 × 107 genome equivalents per bee) and at lower prevalence (58% in England and Wales, n = 203, and 14% across the United States, n = 124) compared to DWV-A and -B. DWV-B prevalence and dominance in England and Wales coincided with low OCL (6%). Meanwhile, a 60% loss was reported by participating U.S. beekeepers. In the United States, DWV-A prevalence (89%, n = 18) and viral load were significantly (p = 0.002) higher (1 × 10 8-1 × 1011) in colonies that died when compared to the surviving colonies (49% (n = 27), 1 × 106-1 × 1010). DWV-B had low prevalence (56%, n = 18) in the colonies that died with viral loads of <1 × 1010. However, DWV-B was routinely detected in high viral loads (>1 × 1010) in surviving colonies from all sample locations, providing further supporting evidence of DWV-A exhibiting increased virulence over DWV-B at the colony level.


Asunto(s)
Abejas/virología , Virus ARN/patogenicidad , Animales , Abejas/crecimiento & desarrollo , Inglaterra , Virus ARN/clasificación , Virus ARN/genética , Virus ARN/aislamiento & purificación , Estados Unidos , Virulencia , Gales
4.
Mol Ecol ; 25(21): 5439-5450, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27717118

RESUMEN

Dysbiosis, defined as unhealthy shifts in bacterial community composition, can lower the colonization resistance of the gut to intrinsic pathogens. Here, we determined the effect of diet age and type on the health and bacterial community composition of the honeybee (Apis mellifera). We fed newly emerged bees fresh or aged diets, and then recorded host development and bacterial community composition from four distinct regions of the hosts' digestive tract. Feeding fresh pollen or fresh substitute, we found no difference in host mortality, diet consumption, development or microbial community composition. In contrast, bees fed aged diets suffered impaired development, increased mortality and developed a significantly dysbiotic microbiome. The consumption of aged diets resulted in a significant reduction in the core ileum bacterium Snodgrassella alvi and a corresponding increase in intrinsic pathogen Frischella perrara. Moreover, the relative abundance of S. alvi in the ileum was positively correlated with host survival and development. The inverse was true for both F. perrara and Parasacharibacter apium. Collectively, our findings suggest that the early establishment of S. alvi is associated with healthy nurse development and potentially excludes F. perrara and P. apium from the ileum. Although at low abundance, establishment of the common midgut pathogen Nosema spp. was significantly associated with ileum dysbiosis and associated host deficiencies. Moreover, dysbiosis in the ileum was reflected in the rectum, mouthparts and hypopharyngeal glands, suggesting a systemic host effect. Our findings demonstrate that typically occurring alterations in diet quality play a significant role in colony health and the establishment of a dysbiotic gut microbiome.


Asunto(s)
Abejas/microbiología , Dieta/veterinaria , Disbiosis/microbiología , Tracto Gastrointestinal/microbiología , Nosema , Animales
5.
PeerJ ; 3: e1329, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26623177

RESUMEN

One of the best indicators of colony health for the European honey bee (Apis mellifera) is its performance in the production of honey. Recent research into the microbial communities naturally populating the bee gut raise the question as to whether there is a correlation between microbial community structure and colony productivity. In this work, we used 16S rRNA amplicon sequencing to explore the microbial composition associated with forager bees from honey bee colonies producing large amounts of surplus honey (productive) and compared them to colonies producing less (unproductive). As supported by previous work, the honey bee microbiome was found to be dominated by three major phyla: the Proteobacteria, Bacilli and Actinobacteria, within which we found a total of 23 different bacterial genera, including known "core" honey bee microbiome members. Using discriminant function analysis and correlation-based network analysis, we identified highly abundant members (such as Frischella and Gilliamella) as important in shaping the bacterial community; libraries from colonies with high quantities of these Orbaceae members were also likely to contain fewer Bifidobacteria and Lactobacillus species (such as Firm-4). However, co-culture assays, using isolates from these major clades, were unable to confirm any antagonistic interaction between Gilliamella and honey bee gut bacteria. Our results suggest that honey bee colony productivity is associated with increased bacterial diversity, although this mechanism behind this correlation has yet to be determined. Our results also suggest researchers should not base inferences of bacterial interactions solely on correlations found using sequencing. Instead, we suggest that depth of sequencing and library size can dramatically influence statistically significant results from sequence analysis of amplicons and should be cautiously interpreted.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...