Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biophys J ; 108(7): 1633-1644, 2015 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-25863055

RESUMEN

Eisosomes are plasma membrane domains concentrating lipids, transporters, and signaling molecules. In the budding yeast Saccharomyces cerevisiae, these domains are structured by scaffolds composed mainly by two cytoplasmic proteins Pil1 and Lsp1. Eisosomes are immobile domains, have relatively uniform size, and encompass thousands of units of the core proteins Pil1 and Lsp1. In this work we used fluorescence fluctuation analytical methods to determine the dynamics of eisosome core proteins at different subcellular locations. Using a combination of scanning techniques with autocorrelation analysis, we show that Pil1 and Lsp1 cytoplasmic pools freely diffuse whereas an eisosome-associated fraction of these proteins exhibits slow dynamics that fit with a binding-unbinding equilibrium. Number and brightness analysis shows that the eisosome-associated fraction is oligomeric, while cytoplasmic pools have lower aggregation states. Fluorescence lifetime imaging results indicate that Pil1 and Lsp1 directly interact in the cytoplasm and within the eisosomes. These results support a model where Pil1-Lsp1 heterodimers are the minimal eisosomes building blocks. Moreover, individual-eisosome fluorescence fluctuation analysis shows that eisosomes in the same cell are not equal domains: while roughly half of them are mostly static, the other half is actively exchanging core protein subunits.


Asunto(s)
Membrana Celular/metabolismo , Fosfoproteínas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Unión Proteica , Subunidades de Proteína/metabolismo
2.
Mol Genet Genomics ; 287(8): 607-20, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22797686

RESUMEN

Membrane compartmentalization allows the spatial segregation of different functions, such as signal transduction and protein trafficking, and ensures their fidelity and efficiency. Eisosomes constitute nanoscale furrow-like invaginations of the plasma membrane where proteins and lipids segregate. The intense interest elicited by eisosomes over the last few years has led to the identification and molecular characterization of their key constituents. This review addresses eisosome structure, functions and its implications for the mechanistic understanding of curvature-induced membrane nanodomains formation and signaling compartmentalization in living cells.


Asunto(s)
Membrana Celular/química , Membrana Celular/metabolismo , Hongos/fisiología , Orgánulos/química , Orgánulos/metabolismo , Endocitosis/fisiología , Microdominios de Membrana/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Transducción de Señal
3.
Mol Biol Cell ; 22(13): 2360-72, 2011 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-21593205

RESUMEN

Eisosomes define sites of plasma membrane organization. In Saccharomyces cerevisiae, eisosomes delimit furrow-like plasma membrane invaginations that concentrate sterols, transporters, and signaling molecules. Eisosomes are static macromolecular assemblies composed of cytoplasmic proteins, most of which have no known function. In this study, we used a bioinformatics approach to analyze a set of 20 eisosome proteins. We found that the core components of eisosomes, paralogue proteins Pil1 and Lsp1, are distant homologues of membrane-sculpting Bin/amphiphysin/Rvs (BAR) proteins. Consistent with this finding, purified recombinant Pil1 and Lsp1 tubulated liposomes and formed tubules when the proteins were overexpressed in mammalian cells. Structural homology modeling and site-directed mutagenesis indicate that Pil1 positively charged surface patches are needed for membrane binding and liposome tubulation. Pil1 BAR domain mutants were defective in both eisosome assembly and plasma membrane domain organization. In addition, we found that eisosome-associated proteins Slm1 and Slm2 have F-BAR domains and that these domains are needed for targeting to furrow-like plasma membrane invaginations. Our results support a model in which BAR domain protein-mediated membrane bending leads to clustering of lipids and proteins within the plasma membrane.


Asunto(s)
Fosfoproteínas/química , Fosfoproteínas/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Animales , Células COS , Proteínas Portadoras/química , Proteínas Portadoras/metabolismo , Membrana Celular/genética , Membrana Celular/metabolismo , Chlorocebus aethiops , Biología Computacional/métodos , Citoplasma/metabolismo , Proteínas del Citoesqueleto , Liposomas/metabolismo , Lípidos de la Membrana/metabolismo , Proteínas de la Membrana/química , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Modelos Moleculares , Fosfoproteínas/genética , Estructura Terciaria de Proteína , Proteínas de Unión al ARN/química , Proteínas de Unión al ARN/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética
4.
Nat Struct Mol Biol ; 17(7): 901-8, 2010 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-20526336

RESUMEN

The plasma membrane delimits the cell and controls material and information exchange between itself and the environment. How different plasma-membrane processes are coordinated and how the relative abundance of plasma-membrane lipids and proteins is homeostatically maintained are not yet understood. Here, we used a quantitative genetic interaction map, or E-MAP, to functionally interrogate a set of approximately 400 genes involved in various aspects of plasma-membrane biology, including endocytosis, signaling, lipid metabolism and eisosome function. From this E-MAP, we derived a set of 57,799 individual interactions between genes functioning in these various processes. Using triplet genetic motif analysis, we identified a new component of the eisosome, Eis1, and linked the poorly characterized gene EMP70 to endocytic and eisosome function. Finally, we implicated Rom2, a GDP/GTP exchange factor for Rho1 and Rho2, in the regulation of sphingolipid metabolism.


Asunto(s)
Membrana Celular/metabolismo , Endosomas/metabolismo , Genes Fúngicos , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Esfingolípidos/metabolismo , Membrana Celular/genética , Endocitosis , Endosomas/genética , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Esfingolípidos/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...