Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Intervalo de año de publicación
1.
Hepatology ; 2023 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-37934624

RESUMEN

BACKGROUND AND AIM: Germline mutations of telomere-related genes (TRG) induce multiorgan dysfunction, and liver-specific manifestations have not been clearly outlined. We aimed to describe TRG mutations-associated liver diseases. APPROACH AND RESULTS: Retrospective multicenter analysis of liver disease (transaminases > 30 IU/L and/or abnormal liver imaging) in patients with TRG mutations. Main measurements were characteristics, outcomes, and risk factors of liver disease in a TRG mutations cohort. The prevalence of liver disease was compared to a community-based control group (n = 1190) stratified for age and matched 1:3 for known risk factors of liver disease. Among 132 patients with TRG mutations, 95 (72%) had liver disease, with associated lung, blood, skin, rheumatological, and ophthalmological TRG diseases in 82%, 77%, 55%, 39%, and 30% of cases, respectively. Liver biopsy was performed in 52/95 patients, identifying porto-sinusoidal vascular disease in 48% and advanced fibrosis/cirrhosis in 15%. After a follow-up of 21 months (12-54), ascites, hepato-pulmonary syndrome, variceal bleeding, and HCC occurred in 14%, 13%, 13%, and 2% of cases, respectively. Five-year liver transplantation-free survival was 69%. A FIB-4 score ≥ 3·25 and ≥1 risk factor for cirrhosis were associated with poor liver transplantation-free survival. Liver disease was more frequent in patients with TRG mutations than in the paired control group [80/396, (20%)], OR 12.9 (CI 95%: 7.8-21.3, p < 0.001). CONCLUSIONS: TRG mutations significantly increase the risk of developing liver disease. Although symptoms may be mild, they may be associated with severe disease. Porto-sinusoidal vascular disease and cirrhosis were the most frequent lesions, suggesting that the mechanism of action is multifactorial.

2.
Preprint en Inglés | bioRxiv | ID: ppbiorxiv-458516

RESUMEN

Mast cells are key actors of innate immunity and Th2 adaptive immune response which counterbalance Th1 response, critical for anti-viral immunity. Clonal Mast Cells Activation Disorders (cMCADs) such as mastocytosis and clonal mast cells activation syndrome are characterized by an abnormal mast cells accumulation and/or activation. No data have been published on the anti-viral immune response of patients with cMCADs. The aims of the study were to collected, in a comprehensive way, outcomes of cMCADs patients who experienced a biologically-proven COVID-19 and to characterize both anti-endemic coronaviruses and specific anti-SARS-CoV-2 immune responses in these patients. Clinical follow-up and outcome data were collected prospectively for one year within the French rare disease network CEREMAST encompassing patients from all over the country. Anti-SARS-CoV-2 and anti-endemic coronaviruses specific T-cells were assessed with an enzyme-linked immunospot assay (EliSpot) and anti-SARS-CoV-2 humoral response with dosage of circulating levels of specific IgG, IgA and neutralizing antibodies. Overall, 32 cMCADs patients were identified. None of them required non-invasive or mechanical ventilation; two patients were hospitalized to receive oxygen and steroid therapy. In 21 patients, a characterization of the SARS-CoV-2-specific immune response has been performed. A majority of patients showed a high proportion of circulating SARS-CoV-2-specific interferon (IFN)-{gamma} producing T-cells and high levels of anti-Spike IgG antibodies with neutralizing activity. In addition, no defects in anti-endemic coronaviruses responses were found in patients with cMCADs compared to non-cMCADs controls. Patients with cMCADs frequently showed a spontaneous IFN-{gamma} T-cell production in absence of any stimulation that correlated with circulating basal tryptase levels, a marker of mast cells burden. These findings underscore that patients with cMCADs might be not at risk of severe COVID-19 and the spontaneous IFN-{gamma} production might explain this observation. Author SummaryMast cells are immune cells involved in many biological processes including the anti-microbial response. However, previous studies suggest that mast cells may have a detrimental role in the response against viruses such as SARS-CoV-2, responsible for COVID-19. When a mutation occurs in mast cells, it can lead to a group of diseases called clonal mast cells activation disorders (cMCADs), characterized by deregulated activation of these cells. Hence, patients with cMCADs might be more susceptible to severe COVID-19 than general population. We therefore conducted a 1-year study in France to collect data from all cMCADs patients included in the CEREMAST rare disease French network and who experienced COVID-19. Interestingly, we did not find any severe COVID-19 (i.e. requiring non-invasive or mechanical ventilation) in spite of well-known risk factors for severe COVID-19 in a part of cMCADs patients. We then have studied the immune response against SARS-CoV-2 and other endemic coronaviruses in these patients. We did not observe any abnormalities in the immune response either at the level of T and B lymphocytes. These findings underscore that these patients might not be at risk of severe COVID-19 as one might have feared.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...