Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2023 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-36993757

RESUMEN

Technical advances have led to an explosion in the amount of biological data available in recent years, especially in the field of RNA sequencing. Specifically, spatial transcriptomics (ST) datasets, which allow each RNA molecule to be mapped to the 2D location it originated from within a tissue, have become readily available. Due to computational challenges, ST data has rarely been used to study RNA processing such as splicing or differential UTR usage. We apply the ReadZS and the SpliZ, methods developed to analyze RNA process in scRNA-seq data, to analyze spatial localization of RNA processing directly from ST data for the first time. Using Moran's I metric for spatial autocorrelation, we identify genes with spatially regulated RNA processing in the mouse brain and kidney, re-discovering known spatial regulation in Myl6 and identifying previously-unknown spatial regulation in genes such as Rps24, Gng13, Slc8a1, Gpm6a, Gpx3, ActB, Rps8, and S100A9. The rich set of discoveries made here from commonly used reference datasets provides a small taste of what can be learned by applying this technique more broadly to the large quantity of Visium data currently being created.

3.
Nat Methods ; 19(3): 307-310, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35241832

RESUMEN

Detecting single-cell-regulated splicing from droplet-based technologies is challenging. Here, we introduce the splicing Z score (SpliZ), an annotation-free statistical method to detect regulated splicing in single-cell RNA sequencing. We applied the SpliZ to human lung cells, discovering hundreds of genes with cell-type-specific splicing patterns including ones with potential implications for basic and translational biology.


Asunto(s)
Empalme Alternativo , Empalme del ARN , Humanos
4.
Elife ; 102021 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-34515025

RESUMEN

The extent splicing is regulated at single-cell resolution has remained controversial due to both available data and methods to interpret it. We apply the SpliZ, a new statistical approach, to detect cell-type-specific splicing in >110K cells from 12 human tissues. Using 10X Chromium data for discovery, 9.1% of genes with computable SpliZ scores are cell-type-specifically spliced, including ubiquitously expressed genes MYL6 and RPS24. These results are validated with RNA FISH, single-cell PCR, and Smart-seq2. SpliZ analysis reveals 170 genes with regulated splicing during human spermatogenesis, including examples conserved in mouse and mouse lemur. The SpliZ allows model-based identification of subpopulations indistinguishable based on gene expression, illustrated by subpopulation-specific splicing of classical monocytes involving an ultraconserved exon in SAT1. Together, this analysis of differential splicing across multiple organs establishes that splicing is regulated cell-type-specifically.


Asunto(s)
Cheirogaleidae/genética , Ratones/genética , Empalme del ARN , Análisis de la Célula Individual , Animales
5.
Genome Biol ; 22(1): 219, 2021 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-34353340

RESUMEN

Precise splice junction calls are currently unavailable in scRNA-seq pipelines such as the 10x Chromium platform but are critical for understanding single-cell biology. Here, we introduce SICILIAN, a new method that assigns statistical confidence to splice junctions from a spliced aligner to improve precision. SICILIAN is a general method that can be applied to bulk or single-cell data, but has particular utility for single-cell analysis due to that data's unique challenges and opportunities for discovery. SICILIAN's precise splice detection achieves high accuracy on simulated data, improves concordance between matched single-cell and bulk datasets, and increases agreement between biological replicates. SICILIAN detects unannotated splicing in single cells, enabling the discovery of novel splicing regulation through single-cell analysis workflows.


Asunto(s)
Empalme del ARN , Análisis de la Célula Individual , Algoritmos , Empalme Alternativo , Animales , Biología Computacional/métodos , Entropía , Humanos , Ratones , Análisis de Secuencia de ARN/métodos
6.
Mol Biol Evol ; 36(1): 112-126, 2019 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-30371871

RESUMEN

Several plant lineages have evolved adaptations that allow survival in extreme and harsh environments including many families within the plant clade Portulacineae (Caryophyllales) such as the Cactaceae, Didiereaceae, and Montiaceae. Here, using newly generated transcriptomic data, we reconstructed the phylogeny of Portulacineae and examined potential correlates between molecular evolution and adaptation to harsh environments. Our phylogenetic results were largely congruent with previous analyses, but we identified several early diverging nodes characterized by extensive gene tree conflict. For particularly contentious nodes, we present detailed information about the phylogenetic signal for alternative relationships. We also analyzed the frequency of gene duplications, confirmed previously identified whole genome duplications (WGD), and proposed a previously unidentified WGD event within the Didiereaceae. We found that the WGD events were typically associated with shifts in climatic niche but did not find a direct association with WGDs and diversification rate shifts. Diversification shifts occurred within the Portulacaceae, Cactaceae, and Anacampserotaceae, and whereas these did not experience WGDs, the Cactaceae experienced extensive gene duplications. We examined gene family expansion and molecular evolutionary patterns with a focus on genes associated with environmental stress responses and found evidence for significant gene family expansion in genes with stress adaptation and clades found in extreme environments. These results provide important directions for further and deeper examination of the potential links between molecular evolutionary patterns and adaptation to harsh environments.


Asunto(s)
Adaptación Biológica , Evolución Biológica , Caryophyllales/genética , Frío , Sequías , Familia de Multigenes , Poliploidía
7.
Bioinformatics ; 35(14): 2495-2497, 2019 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-30520965

RESUMEN

SUMMARY: Large biobanks linking phenotype to genotype have led to an explosion of genetic association studies across a wide range of phenotypes. Sharing the knowledge generated by these resources with the scientific community remains a challenge due to patient privacy and the vast amount of data. Here, we present Global Biobank Engine (GBE), a web-based tool that enables exploration of the relationship between genotype and phenotype in biobank cohorts, such as the UK Biobank. GBE supports browsing for results from genome-wide association studies, phenome-wide association studies, gene-based tests and genetic correlation between phenotypes. We envision GBE as a platform that facilitates the dissemination of summary statistics from biobanks to the scientific and clinical communities. AVAILABILITY AND IMPLEMENTATION: GBE currently hosts data from the UK Biobank and can be found freely available at biobankengine.stanford.edu.


Asunto(s)
Bancos de Muestras Biológicas , Estudio de Asociación del Genoma Completo , Genotipo , Humanos , Fenómica , Fenotipo
8.
Nature ; 557(7705): 452-456, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29720655

RESUMEN

Despite intense interest in discovering drugs that cause G-protein-coupled receptors (GPCRs) to selectively stimulate or block arrestin signalling, the structural mechanism of receptor-mediated arrestin activation remains unclear1,2. Here we reveal this mechanism through extensive atomic-level simulations of arrestin. We find that the receptor's transmembrane core and cytoplasmic tail-which bind distinct surfaces on arrestin-can each independently stimulate arrestin activation. We confirm this unanticipated role of the receptor core, and the allosteric coupling between these distant surfaces of arrestin, using site-directed fluorescence spectroscopy. The effect of the receptor core on arrestin conformation is mediated primarily by interactions of the intracellular loops of the receptor with the arrestin body, rather than the marked finger-loop rearrangement that is observed upon receptor binding. In the absence of a receptor, arrestin frequently adopts active conformations when its own C-terminal tail is disengaged, which may explain why certain arrestins remain active long after receptor dissociation. Our results, which suggest that diverse receptor binding modes can activate arrestin, provide a structural foundation for the design of functionally selective ('biased') GPCR-targeted ligands with desired effects on arrestin signalling.


Asunto(s)
Arrestinas/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Animales , Arrestinas/química , Bovinos , Ligandos , Receptores Acoplados a Proteínas G/química , Transducción de Señal , Espectrometría de Fluorescencia
9.
Am J Bot ; 105(3): 446-462, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29738076

RESUMEN

PREMISE OF THE STUDY: The Caryophyllales contain ~12,500 species and are known for their cosmopolitan distribution, convergence of trait evolution, and extreme adaptations. Some relationships within the Caryophyllales, like those of many large plant clades, remain unclear, and phylogenetic studies often recover alternative hypotheses. We explore the utility of broad and dense transcriptome sampling across the order for resolving evolutionary relationships in Caryophyllales. METHODS: We generated 84 transcriptomes and combined these with 224 publicly available transcriptomes to perform a phylogenomic analysis of Caryophyllales. To overcome the computational challenge of ortholog detection in such a large data set, we developed an approach for clustering gene families that allowed us to analyze >300 transcriptomes and genomes. We then inferred the species relationships using multiple methods and performed gene-tree conflict analyses. KEY RESULTS: Our phylogenetic analyses resolved many clades with strong support, but also showed significant gene-tree discordance. This discordance is not only a common feature of phylogenomic studies, but also represents an opportunity to understand processes that have structured phylogenies. We also found taxon sampling influences species-tree inference, highlighting the importance of more focused studies with additional taxon sampling. CONCLUSIONS: Transcriptomes are useful both for species-tree inference and for uncovering evolutionary complexity within lineages. Through analyses of gene-tree conflict and multiple methods of species-tree inference, we demonstrate that phylogenomic data can provide unparalleled insight into the evolutionary history of Caryophyllales. We also discuss a method for overcoming computational challenges associated with homolog clustering in large data sets.


Asunto(s)
Evolución Biológica , Caryophyllales/genética , Genes de Plantas , Genómica/métodos , Modelos Genéticos , Filogenia , Transcriptoma , Cactaceae/genética , Carnivoría , Análisis por Conglomerados , Evolución Molecular , Genoma de Planta , Análisis de Secuencia de ADN , Homología de Secuencia , Especificidad de la Especie
10.
New Phytol ; 217(2): 855-870, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-28944472

RESUMEN

Studies of the macroevolutionary legacy of polyploidy are limited by an incomplete sampling of these events across the tree of life. To better locate and understand these events, we need comprehensive taxonomic sampling as well as homology inference methods that accurately reconstruct the frequency and location of gene duplications. We assembled a data set of transcriptomes and genomes from 168 species in Caryophyllales, of which 43 transcriptomes were newly generated for this study, representing one of the most densely sampled genomic-scale data sets available. We carried out phylogenomic analyses using a modified phylome strategy to reconstruct the species tree. We mapped the phylogenetic distribution of polyploidy events by both tree-based and distance-based methods, and explicitly tested scenarios for allopolyploidy. We identified 26 ancient and more recent polyploidy events distributed throughout Caryophyllales. Two of these events were inferred to be allopolyploidy. Through dense phylogenomic sampling, we show the propensity of polyploidy throughout the evolutionary history of Caryophyllales. We also provide a framework for utilizing transcriptome data to detect allopolyploidy, which is important as it may have different macroevolutionary implications compared with autopolyploidy.


Asunto(s)
Caryophyllales/genética , Poliploidía , Transcriptoma/genética , Ecosistema , Funciones de Verosimilitud , Filogenia , Especificidad de la Especie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...