Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Pharmaceuticals (Basel) ; 15(12)2022 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-36558951

RESUMEN

Dengue and Zika viruses are identified as the most medically important arthropod-borne viral pathogens. Over the past 20 years, the global dengue incidence has dramatically increased with epidemics of severe dengue where the case fatality rate can reach up to 20% in untreated patients. The association between Zika virus infection and severe congenital anomalies was first reported in 2015. Today no specific antiviral therapies are available for dengue and Zika virus infections, accentuating the need of adapted antiviral strategies based on medicinal plant drug discovery. Plants are a potential source of antiviral phytocompounds which act primarily by blocking virus entry in the host-cell. In the present study, we evaluated whether crude extracts from Stenocline ericoides DC. and Stenocline inuloides DC., two endemic plants from Madagascar, may have antiviral effects against dengue and Zika viruses. We showed that S. ericoides has virucidal action whereas S. inuloides inhibits the early steps of virus infection with a non-cytotoxic effect in human cells. The administration of S. ericoides and S. inuloides extracts in zebrafish had no effect on the behavior of animals at the active doses against dengue and Zika viruses, suggesting the absence of adverse effects at these doses. LC-HRMS2 and molecular networking analyses revealed the richness of these two plants in polyphenols and flavonoid with the presence of clusters of phytocompounds specific to each Stenocline species. Consequently, S. ericoides and S. inuloides represent potential sources for natural and safe antiviral phytocompounds against flaviviruses of medical concern.

2.
Molecules ; 27(22)2022 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-36431992

RESUMEN

Quinoline derivatives and especially quinolones are considered as privileged structures in medicinal chemistry and are often associated with various biological properties. We recently isolated a series of original monoterpenyl quinolones from the bark of Codiaeum peltatum. As this extract was found to have a significant inhibitory activity against a Leishmania species, we decided to study the anti-leishmanial potential of this type of compound. Leishmaniasis is a serious health problem affecting more than 12 million people in the world. Available drugs cause harmful side effects and resistance for some of them. With the aim of finding anti-leishmanial compounds, we developed a synthetic strategy to access natural quinolones and analogues derived from zanthosimuline. We showed the versatility of this natural compound toward cyclization conditions, leading to various polycyclic quinolone-derived structures. The natural and synthetic compounds were evaluated against amastigote forms of Leishmania infantum. The results obtained confirmed the interest of this family of natural compounds but also revealed promising activities for some intermediates deriving from zanthosimuline. Following the same synthetic strategy, we then prepared 14 new analogues. In this work, we identified two promising molecules with good activities against intramacrophage L. infantum amastigotes without any cytotoxicity. We also showed that slight changes in amide functional groups affect drastically their anti-parasitic activity.


Asunto(s)
Antiprotozoarios , Leishmania infantum , Quinolonas , Humanos , Antiprotozoarios/farmacología , Antiprotozoarios/química , Leishmania infantum/efectos de los fármacos , Quinolonas/farmacología
3.
J Nat Prod ; 83(10): 3069-3079, 2020 10 23.
Artículo en Inglés | MEDLINE | ID: mdl-33016067

RESUMEN

A unique collection of 292 extracts from 107 New Caledonian Euphorbiaceae species sensu lato was profiled by LC-MS2 and the metabolite content organized by molecular networking. Based on the assumption that taxon-specific molecules are more likely to be structurally novel, taxonomic data were mapped on spectral networks to detect genus-specific clusters. Using this approach, a group of compounds unique to the genus Austrobuxus was highlighted. The subsequent MS-guided purification of the fruit EtOAc extract of Austrobuxus carunculatus led to the isolation of 13 new monolactone and "norditerpene" picrotoxanes (2-14), along with the known tutin (1). The structures of the new compounds were elucidated by HRESIMS and NMR spectroscopic data analysis, and the absolute configurations of compounds 1, 3, 7, 11, 12, and 14 were determined by single-crystal X-ray diffraction analysis. The relative and absolute configurations of compounds 4 and 5 were ascertained by chemical transformation of compound 3. The absolute configurations of other members of the series have been proposed on the basis of biogenetic considerations and specific rotation values of similar sign and magnitude. Compounds 1-14 were evaluated for their antiproliferative activities against HCT116 colon, U87-MG glioblastoma, and A549 lung human cancer cell lines. Compounds bearing an acyl chain at C-2 (i.e., 2, 4, and 13) showed IC50 values in the micromolar range for the three cell lines used.


Asunto(s)
Antineoplásicos Fitogénicos/aislamiento & purificación , Euphorbiaceae/química , Euphorbiaceae/clasificación , Antineoplásicos Fitogénicos/química , Antineoplásicos Fitogénicos/farmacología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Clasificación , Diterpenos , Humanos , Espectroscopía de Resonancia Magnética , Espectrometría de Masas , Redes y Vías Metabólicas , Estructura Molecular , Extractos Vegetales/química , Extractos Vegetales/farmacología , Espectrometría de Masa por Ionización de Electrospray , Relación Estructura-Actividad , Difracción de Rayos X
4.
J Nat Prod ; 82(2): 330-340, 2019 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-30681849

RESUMEN

From a set of 292 Euphorbiaceae extracts, the use of a molecular networking (MN)-based prioritization approach highlighted three clusters (MN1-3) depicting ions from the bark extract of Codiaeum peltatum. Based on their putative antiviral potential and structural novelty, the MS-guided purification of compounds present in MN1 and MN2 afforded two new daphnane-type diterpenoid orthoesters (DDO), codiapeltines A (1) and B (2), the new actephilols B (3) and C (4), and four known 1,4-dioxane-fused phenanthrene dimers (5-8). The structures of the new compounds were elucidated by NMR spectroscopic data analysis, and the absolute configurations of compounds 1 and 2 were deduced by comparison of experimental and calculated ECD spectra. Codiapeltine B (2) is the first daphnane bearing a 9,11,13-orthoester moiety, establishing a new major structural class of DDO. Compounds 1-8 and four recently reported monoterpenyl quinolones (9-12) detected in MN3 were investigated for their selective activities against chikungunya virus replication and their antipolymerase activities against the NS5 proteins of dengue and zika viruses. Compounds 3-8 exhibited strong inhibitory activities on both dengue and zika NS5 in primary assays, but extensive biological analyses indicated that only actephilol B (3) displayed a specific interaction with the NS5 targets.


Asunto(s)
Antivirales/aislamiento & purificación , Euphorbiaceae/química , Antivirales/química , Antivirales/farmacología , Virus Chikungunya/efectos de los fármacos , Virus del Dengue/efectos de los fármacos , Espectroscopía de Resonancia Magnética , Replicación Viral/efectos de los fármacos , Virus Zika/efectos de los fármacos
5.
Anal Chem ; 90(23): 13900-13908, 2018 12 04.
Artículo en Inglés | MEDLINE | ID: mdl-30335965

RESUMEN

Molecular networking (MN) is becoming a standard bioinformatics tool in the metabolomic community. Its paradigm is based on the observation that compounds with a high degree of chemical similarity share comparable MS2 fragmentation pathways. To afford a clear separation between MS2 spectral clusters, only the most relevant similarity scores are selected using dedicated filtering steps requiring time-consuming parameter optimization. Depending on the filtering values selected, some scores are arbitrarily deleted and a part of the information is ignored. The problem of creating a reliable representation of MS2 spectra data sets can be solved using algorithms developed for dimensionality reduction and pattern recognition purposes, such as t-distributed stochastic neighbor embedding (t-SNE). This multivariate embedding method pays particular attention to local details by using nonlinear outputs to represent the entire data space. To overcome the limitations inherent to the GNPS workflow and the networking architecture, we developed MetGem. Our software allows the parallel investigation of two complementary representations of the raw data set, one based on a classic GNPS-style MN and another based on the t-SNE algorithm. The t-SNE graph preserves the interactions between related groups of spectra, while the MN output allows an unambiguous separation of clusters. Additionally, almost all parameters can be tuned in real time, and new networks can be generated within a few seconds for small data sets. With the development of this unified interface ( https://metgem.github.io ), we fulfilled the need for a dedicated, user-friendly, local software for MS2 comparison and spectral network generation.


Asunto(s)
Algoritmos , Euphorbiaceae/química , Extractos Vegetales/análisis , Programas Informáticos , Metabolómica , Extractos Vegetales/metabolismo
6.
J Nat Prod ; 81(7): 1610-1618, 2018 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-29969260

RESUMEN

In an effort to find potent natural inhibitors of RhoA and p115 signaling G-proteins, a systematic in vitro evaluation using enzymatic and plasmonic resonance assays was undertaken on 11 317 plant extracts. The screening procedure led to the selection of the New Caledonian endemic species Meiogyne baillonii for a chemical investigation. Using a bioguided isolation procedure, three enediyne-γ-butyrolactones (1-3) and two enediyne-γ-butenolides (4 and 5), named sapranthins H-L, respectively, two enediyne carboxylic acid (6 and 7), two depsidones, stictic acid (8) and baillonic acid (9), aristolactams AIa and AIIa (10 and 11), and two aporphines, dehydroroemerine (12) and noraristolodione (13), were isolated from the ethyl acetate extract of the bark. The structures of the new compounds (1-6, 9, and 11) and their relative configurations were established by NMR spectroscopic analysis and by X-ray diffraction analysis for compound 9. Only stictic acid (8) exhibited a significant inhibiting activity of the RhoA-p115 complex, with an EC50 value of 0.19 ± 0.05 mM. This is the first time that a natural inhibitor of the complex RhoA-p115's activity was discovered from an HTS performed over a collection of higher plant extracts. Thus, stictic acid (8) could be used as the first reference compound inhibiting the interaction between RhoA and p115.


Asunto(s)
Annonaceae/química , Extractos Vegetales/farmacología , Factores de Intercambio de Guanina Nucleótido Rho/antagonistas & inhibidores , Proteína de Unión al GTP rhoA/antagonistas & inhibidores , Espectroscopía de Resonancia Magnética , Estructura Molecular , Corteza de la Planta/química , Extractos Vegetales/química
7.
J Nat Prod ; 81(4): 901-912, 2018 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-29493237

RESUMEN

Bioassay-guided fractionation of an EtOAc extract of the trunk bark of Sandwithia guyanensis, using a chikungunya virus (CHIKV)-cell-based assay, afforded 17 new diterpenoids 1-17 and the known jatrointelones A and C (18 and 19). The new compounds included two tetranorditerpenoids 1 and 2, a trinorditerpenoid 3, euphoractines P-W (4-11), and euphactine G (13) possessing the rare 5/6/7/3 (4-7), 5/6/6/4 (8-11), and 5/6/8 (13) fused ring skeletons, sikkimenoid E (12), and jatrointelones J-M (14-17) possessing jatropholane and lathyrane carbon skeletons, respectively. Jatrointelones J (14) and M (17) represent the first naturally occurring examples of C-15 nonoxidized lathyrane-type diterpenoids. The structures of the new compounds were elucidated by NMR spectroscopic data analysis. The relative configuration of compound 16 and the absolute configurations of compounds 3-6 and 14 were determined by single-crystal X-ray diffraction analysis. In addition, jatrointelone K (15) was chemically transformed to euphoractine T (8) supporting the biosynthetic relationships between the two types of diterpenoids. Only compound 15 showed a moderate anti-CHIKV activity with an EC50 value of 14 µM. Finally, using a molecular networking-based dereplication strategy, several close analogues of 12- O-tetradecanoylphorbol-13-acetate (TPA), one of the most potent inhibitors of CHIKV replication, were dereplicated.


Asunto(s)
Diterpenos/química , Euphorbiaceae/química , Antivirales/química , Antivirales/farmacología , Virus Chikungunya/efectos de los fármacos , Cristalografía por Rayos X/métodos , Replicación del ADN/efectos de los fármacos , Diterpenos/farmacología , Replicación Viral/efectos de los fármacos
8.
ACS Chem Biol ; 12(10): 2644-2651, 2017 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-28829118

RESUMEN

Natural products represent an inexhaustible source of novel therapeutic agents. Their complex and constrained three-dimensional structures endow these molecules with exceptional biological properties, thereby giving them a major role in drug discovery programs. However, the search for new bioactive metabolites is hampered by the chemical complexity of the biological matrices in which they are found. The purification of single constituents from such matrices requires such a significant amount of work that it should be ideally performed only on molecules of high potential value (i.e., chemical novelty and biological activity). Recent bioinformatics approaches based on mass spectrometry metabolite profiling methods are beginning to address the complex task of compound identification within complex mixtures. However, in parallel to these developments, methods providing information on the bioactivity potential of natural products prior to their isolation are still lacking and are of key interest to target the isolation of valuable natural products only. In the present investigation, we propose an integrated analysis strategy for bioactive natural products prioritization. Our approach uses massive molecular networks embedding various informational layers (bioactivity and taxonomical data) to highlight potentially bioactive scaffolds within the chemical diversity of crude extracts collections. We exemplify this workflow by targeting the isolation of predicted active and nonactive metabolites from two botanical sources (Bocquillonia nervosa and Neoguillauminia cleopatra) against two biological targets (Wnt signaling pathway and chikungunya virus replication). Eventually, the detection and isolation processes of a daphnane diterpene orthoester and four 12-deoxyphorbols inhibiting the Wnt signaling pathway and exhibiting potent antiviral activities against the CHIKV virus are detailed. Combined with efficient metabolite annotation tools, this bioactive natural products prioritization pipeline proves to be efficient. Implementation of this approach in drug discovery programs based on natural extract screening should speed up and rationalize the isolation of bioactive natural products.


Asunto(s)
Productos Biológicos/química , Productos Biológicos/farmacología , Técnicas Químicas Combinatorias , Procesamiento de Imagen Asistido por Computador , Animales , Chlorocebus aethiops , Clasificación , Diseño de Fármacos , Descubrimiento de Drogas , Estructura Molecular , Relación Estructura-Actividad , Células Vero , Proteínas Wnt/genética , Proteínas Wnt/metabolismo
9.
Anal Bioanal Chem ; 409(24): 5767-5778, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28762069

RESUMEN

New omics sciences generate massive amounts of data, requiring to be sorted, curated, and statistically analyzed by dedicated software. Data-dependent acquisition mode including inclusion and exclusion rules for tandem mass spectrometry is routinely used to perform such analyses. While acquisition parameters are well described for proteomics, no general rule is currently available to generate reliable metabolomic data for molecular networking analysis on the Global Natural Product Social Molecular Networking platform (GNPS). Following on from an exploration of key parameters influencing the quality of molecular networks, universal optimal acquisition conditions for metabolomic studies are suggested in the present paper. The benefit of data pre-clustering before initiating large datasets for GNPS analyses is also demonstrated. Moreover, an efficient workflow dedicated to Agilent Technologies instruments is described, making the dereplication process easier by unambiguously distinguishing isobaric isomers eluted at different retention times, annotating the molecular networks with chemical formulas, and giving access to semi-quantitative data. This specific workflow foreshadows future developments of the GNPS platform.


Asunto(s)
Magnoliopsida/metabolismo , Redes y Vías Metabólicas , Metabolómica/métodos , Hojas de la Planta/metabolismo , Espectrometría de Masas en Tándem/métodos , Análisis por Conglomerados , Flujo de Trabajo
10.
Anal Chem ; 89(15): 7836-7840, 2017 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-28644610

RESUMEN

Molecular networking is becoming more and more popular into the metabolomic community to organize tandem mass spectrometry (MS2) data. Even though this approach allows the treatment and comparison of large data sets, several drawbacks related to the MS-Cluster tool routinely used on the Global Natural Product Social Molecular Networking platform (GNPS) limit its potential. MS-Cluster cannot distinguish between chromatography well-resolved isomers as retention times are not taken into account. Annotation with predicted chemical formulas is also not implemented and semiquantification is only based on the number of MS2 scans. We propose to introduce a data-preprocessing workflow including the preliminary data treatment by MZmine 2 followed by a homemade Python script freely available to the community that clears the major previously mentioned GNPS drawbacks. The efficiency of this workflow is exemplified with the analysis of six fractions of increasing polarities obtained from a sequential supercritical CO2 extraction of Stillingia lineata leaves.


Asunto(s)
Productos Biológicos/metabolismo , Programas Informáticos , Productos Biológicos/química , Cromatografía Líquida de Alta Presión , Cromatografía con Fluido Supercrítico , Euphorbiaceae/metabolismo , Metabolómica , Hojas de la Planta/química , Hojas de la Planta/metabolismo , Espectrometría de Masas en Tándem
11.
J Nat Prod ; 78(5): 1119-28, 2015 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-25946116

RESUMEN

In an effort to identify new potent and selective inhibitors of chikungunya virus and HIV-1 and HIV-2 virus replication, the endemic Mascarene species Stillingia lineata was investigated. LC/MS and bioassay-guided purification of the EtOAc leaf extract using a chikungunya virus-cell-based assay led to the isolation of six new (4-9) and three known (1-3) tonantzitlolones possessing the rare C20-flexibilane skeleton, along with tonantzitloic acid (10), a new linear diterpenoid, and three new (11, 13, and 15) and two known (12 and 14) tigliane-type diterpenoids. The planar structures of the new compounds and their relative configurations were determined by spectroscopic analysis, and their absolute configurations were determined through comparison with literature data and from biogenetic considerations. These compounds were investigated for selective antiviral activity against chikungunya virus (CHIKV), Semliki Forest virus, Sindbis virus, and, for compounds 11-15, the HIV-1 and HIV-2 viruses. Compounds 12-15 were found to be the most potent and are selective inhibitors of CHIKV, HIV-1, and HIV-2 replication. In particular, compound 14 inhibited CHIKV replication with an EC50 value of 1.2 µM on CHIKV and a selectivity index of >240, while compound 15 inhibited HIV-1 and HIV-2 with EC50 values of 0.043 and 0.018 µM, respectively. It was demonstrated further that potency and selectivity are sensitive to the substitution pattern on the tigliane skeleton. The cytotoxic activities of compounds 1-10 were evaluated against the HCT-116, MCF-7, and PC3 cancer cell lines.


Asunto(s)
Antivirales/aislamiento & purificación , Antivirales/farmacología , Diterpenos/aislamiento & purificación , Diterpenos/farmacología , Euphorbiaceae/química , Antivirales/química , Virus Chikungunya/efectos de los fármacos , Diterpenos/química , Francia , Células HCT116 , VIH-1/efectos de los fármacos , VIH-2/efectos de los fármacos , Humanos , Células MCF-7 , Compuestos Macrocíclicos/farmacología , Estructura Molecular , Virus de los Bosques Semliki/efectos de los fármacos , Virus Sindbis/efectos de los fármacos , Replicación Viral/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...