Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
PLoS Pathog ; 18(7): e1010664, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35793393

RESUMEN

Recognition of a pathogen avirulence (AVR) effector protein by a cognate plant resistance (R) protein triggers a set of immune responses that render the plant resistant. Pathogens can escape this so-called Effector-Triggered Immunity (ETI) by different mechanisms including the deletion or loss-of-function mutation of the AVR gene, the incorporation of point mutations that allow recognition to be evaded while maintaining virulence function, and the acquisition of new effectors that suppress AVR recognition. The Dothideomycete Leptosphaeria maculans, causal agent of oilseed rape stem canker, is one of the few fungal pathogens where suppression of ETI by an AVR effector has been demonstrated. Indeed, AvrLm4-7 suppresses Rlm3- and Rlm9-mediated resistance triggered by AvrLm3 and AvrLm5-9, respectively. The presence of AvrLm4-7 does not impede AvrLm3 and AvrLm5-9 expression, and the three AVR proteins do not appear to physically interact. To decipher the epistatic interaction between these L. maculans AVR effectors, we determined the crystal structure of AvrLm5-9 and obtained a 3D model of AvrLm3, based on the crystal structure of Ecp11-1, a homologous AVR effector candidate from Fulvia fulva. Despite a lack of sequence similarity, AvrLm5-9 and AvrLm3 are structural analogues of AvrLm4-7 (structure previously characterized). Structure-informed sequence database searches identified a larger number of putative structural analogues among L. maculans effector candidates, including the AVR effector AvrLmS-Lep2, all produced during the early stages of oilseed rape infection, as well as among effector candidates from other phytopathogenic fungi. These structural analogues are named LARS (for Leptosphaeria AviRulence and Suppressing) effectors. Remarkably, transformants of L. maculans expressing one of these structural analogues, Ecp11-1, triggered oilseed rape immunity in several genotypes carrying Rlm3. Furthermore, this resistance could be suppressed by AvrLm4-7. These results suggest that Ecp11-1 shares a common activity with AvrLm3 within the host plant which is detected by Rlm3, or that the Ecp11-1 structure is sufficiently close to that of AvrLm3 to be recognized by Rlm3.


Asunto(s)
Brassica napus , Enfermedades de las Plantas , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Proteínas de Plantas/metabolismo , Virulencia/genética
2.
Mol Plant Pathol ; 23(5): 733-748, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35239989

RESUMEN

Brassica napus (oilseed rape, canola) seedling resistance to Leptosphaeria maculans, the causal agent of blackleg (stem canker) disease, follows a gene-for-gene relationship. The avirulence genes AvrLmS and AvrLep2 were described to be perceived by the resistance genes RlmS and LepR2, respectively, present in B. napus 'Surpass 400'. Here we report cloning of AvrLmS and AvrLep2 using two independent methods. AvrLmS was cloned using combined in vitro crossing between avirulent and virulent isolates with sequencing of DNA bulks from avirulent or virulent progeny (bulked segregant sequencing). AvrLep2 was cloned using a biparental cross of avirulent and virulent L. maculans isolates and a classical map-based cloning approach. Taking these two approaches independently, we found that AvrLmS and AvrLep2 are the same gene. Complementation of virulent isolates with this gene confirmed its role in inducing resistance on Surpass 400, Topas-LepR2, and an RlmS-line. The gene, renamed AvrLmS-Lep2, encodes a small cysteine-rich protein of unknown function with an N-terminal secretory signal peptide, which is a common feature of the majority of effectors from extracellular fungal plant pathogens. The AvrLmS-Lep2/LepR2 interaction phenotype was found to vary from a typical hypersensitive response through intermediate resistance sometimes towards susceptibility, depending on the inoculation conditions. AvrLmS-Lep2 was nevertheless sufficient to significantly slow the systemic growth of the pathogen and reduce the stem lesion size on plant genotypes with LepR2, indicating the potential efficiency of this resistance to control the disease in the field.


Asunto(s)
Ascomicetos , Brassica napus , Ascomicetos/genética , Brassica napus/genética , Brassica napus/microbiología , Clonación Molecular , Leptosphaeria , Enfermedades de las Plantas/microbiología
3.
New Phytol ; 231(4): 1510-1524, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33621369

RESUMEN

The control of stem canker disease of Brassica napus (rapeseed), caused by the fungus Leptosphaeria maculans is based largely on plant genetic resistance: single-gene specific resistance (Rlm genes) or quantitative, polygenic, adult-stage resistance. Our working hypothesis was that quantitative resistance partly obeys the gene-for-gene model, with resistance genes 'recognizing' fungal effectors expressed during late systemic colonization. Five LmSTEE (stem-expressed effector) genes were selected and placed under the control of the AvrLm4-7 promoter, an effector gene highly expressed at the cotyledon stage of infection, for miniaturized cotyledon inoculation test screening of a gene pool of 204 rapeseed genotypes. We identified a rapeseed genotype, 'Yudal', expressing hypersensitive response to LmSTEE98. The LmSTEE98-RlmSTEE98 interaction was further validated by inactivation of the LmSTEE98 gene with a CRISPR-Cas9 approach. Isolates with mutated versions of LmSTEE98 induced more severe stem symptoms than the wild-type isolate in 'Yudal'. This single-gene resistance was mapped in a 0.6 cM interval of the 'Darmor_bzh' × 'Yudal' genetic map. One typical gene-for-gene interaction contributes partly to quantitative resistance when L. maculans colonizes the stems of rapeseed. With numerous other effectors specific to stem colonization, our study provides a new route for resistance gene discovery, elucidation of quantitative resistance mechanisms and selection for durable resistance.


Asunto(s)
Ascomicetos , Brassica napus , Resistencia a la Enfermedad , Enfermedades de las Plantas , Ascomicetos/genética , Ascomicetos/patogenicidad , Brassica napus/genética , Brassica napus/microbiología , Cotiledón , Resistencia a la Enfermedad/genética , Genes de Plantas , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología
4.
New Phytol ; 223(1): 397-411, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30802965

RESUMEN

Interactions between Leptosphaeria maculans, causal agent of stem canker of oilseed rape, and its Brassica hosts are models of choice to explore the multiplicity of 'gene-for-gene' complementarities and how they diversified to increased complexity in the course of plant-pathogen co-evolution. Here, we support this postulate by investigating the AvrLm10 avirulence that induces a resistance response when recognized by the Brassica nigra resistance gene Rlm10. Using genome-assisted map-based cloning, we identified and cloned two AvrLm10 candidates as two genes in opposite transcriptional orientation located in a subtelomeric repeat-rich region of the genome. The AvrLm10 genes encode small secreted proteins and show expression profiles in planta similar to those of all L. maculans avirulence genes identified so far. Complementation and silencing assays indicated that both genes are necessary to trigger Rlm10 resistance. Three assays for protein-protein interactions showed that the two AvrLm10 proteins interact physically in vitro and in planta. Some avirulence genes are recognized by two distinct resistance genes and some avirulence genes hide the recognition specificities of another. Our L. maculans model illustrates an additional case where two genes located in opposite transcriptional orientation are necessary to induce resistance. Interestingly, orthologues exist for both L. maculans genes in other phytopathogenic species, with a similar genome organization, which may point to an important conserved effector function linked to heterodimerization of the two proteins.


Asunto(s)
Ascomicetos/genética , Brassica napus/genética , Brassica napus/microbiología , Epistasis Genética , Ascomicetos/patogenicidad , Secuencia Conservada/genética , ADN Intergénico/genética , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Sitios Genéticos , Genoma Fúngico , Fenotipo , Mapeo Físico de Cromosoma , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Unión Proteica , Señales de Clasificación de Proteína , Virulencia
5.
New Phytol ; 209(4): 1613-24, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26592855

RESUMEN

Extending the durability of plant resistance genes towards fungal pathogens is a major challenge. We identified and investigated the relationship between two avirulence genes of Leptosphaeria maculans, AvrLm3 and AvrLm4-7. When an isolate possesses both genes, the Rlm3-mediated resistance of oilseed rape (Brassica napus) is not expressed due to the presence of AvrLm4-7 but virulent isolates toward Rlm7 recover the AvrLm3 phenotype. Combining genetic and genomic approaches (genetic mapping, RNA-seq, BAC (bacterial artificial chromosome) clone sequencing and de novo assembly) we cloned AvrLm3, a telomeric avirulence gene of L. maculans. AvrLm3 is located in a gap of the L. maculans reference genome assembly, is surrounded by repeated elements, encodes for a small secreted cysteine-rich protein and is highly expressed at early infection stages. Complementation and silencing assays validated the masking effect of AvrLm4-7 on AvrLm3 recognition by Rlm3 and we showed that the presence of AvrLm4-7 does not impede AvrLm3 expression in planta. Y2H assays suggest the absence of physical interaction between the two avirulence proteins. This unusual interaction is the basis for field experiments aiming to evaluate strategies that increase Rlm7 durability.


Asunto(s)
Ascomicetos/genética , Ascomicetos/patogenicidad , Genes Fúngicos , Secuencia de Aminoácidos , Secuencia de Bases , Brassica napus/genética , Brassica napus/microbiología , Cromosomas Artificiales Bacterianos/genética , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Regulación Bacteriana de la Expresión Génica , Genes de Plantas , Sitios Genéticos , Anotación de Secuencia Molecular , Desnaturalización de Ácido Nucleico , Fenotipo , Mapeo Físico de Cromosoma , Enfermedades de las Plantas/microbiología , Polimorfismo Genético , Unión Proteica , Reproducibilidad de los Resultados , Virulencia/genética
6.
Plant J ; 83(4): 610-24, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26082394

RESUMEN

The avirulence gene AvrLm4-7 of Leptosphaeria maculans, the causal agent of stem canker in Brassica napus (oilseed rape), confers a dual specificity of recognition by two resistance genes (Rlm4 and Rlm7) and is strongly involved in fungal fitness. In order to elucidate the biological function of AvrLm4-7 and understand the specificity of recognition by Rlm4 and Rlm7, the AvrLm4-7 protein was produced in Pichia pastoris and its crystal structure was determined. It revealed the presence of four disulfide bridges, but no close structural analogs could be identified. A short stretch of amino acids in the C terminus of the protein, (R/N)(Y/F)(R/S)E(F/W), was well-conserved among AvrLm4-7 homologs. Loss of recognition of AvrLm4-7 by Rlm4 is caused by the mutation of a single glycine to an arginine residue located in a loop of the protein. Loss of recognition by Rlm7 is governed by more complex mutational patterns, including gene loss or drastic modifications of the protein structure. Three point mutations altered residues in the well-conserved C-terminal motif or close to the glycine involved in Rlm4-mediated recognition, resulting in the loss of Rlm7-mediated recognition. Transient expression in Nicotiana benthamiana (tobacco) and particle bombardment experiments on leaves from oilseed rape suggested that AvrLm4-7 interacts with its cognate R proteins inside the plant cell, and can be translocated into plant cells in the absence of the pathogen. Translocation of AvrLm4-7 into oilseed rape leaves is likely to require the (R/N)(Y/F)(R/S)E(F/W) motif as well as an RAWG motif located in a nearby loop that together form a positively charged region.


Asunto(s)
Ascomicetos/patogenicidad , Brassica napus/metabolismo , Brassica napus/microbiología , Proteínas Fúngicas/metabolismo , Enfermedades de las Plantas/microbiología , Virulencia/genética
7.
Mol Plant Pathol ; 16(9): 1000-5, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25727237

RESUMEN

Leptosphaeria maculans causes stem canker of oilseed rape (Brassica napus). The APSES transcription factor StuA is a key developmental regulator of fungi, involved in morphogenesis, conidia production and also more recently described as required for secondary metabolite production and for effector gene expression in phytopathogenic fungi. We investigated the involvement of the orthologue of StuA in L. maculans, LmStuA, in morphogenesis, pathogenicity and effector gene expression. LmStuA is induced during mycelial growth and at 14 days after infection, corresponding to the development of pycnidia on oilseed rape leaves, consistent with the function of StuA described so far. We set up the functional characterization of LmStuA using an RNA interference approach. Silenced LmStuA transformants showed typical phenotypic defects of StuA mutants with altered growth in axenic culture and impaired conidia production and perithecia formation. Silencing of LmStuA abolished the pathogenicity of L. maculans on oilseed rape leaves and also resulted in a drastic decrease in expression of at least three effector genes during in planta infection, suggesting either that LmStuA regulates, directly or indirectly, the expression of several effector genes in L. maculans or that the infection stage in which effectors are expressed is not reached when LmStuA expression is silenced.


Asunto(s)
Ascomicetos/fisiología , Regulación Fúngica de la Expresión Génica , Factores de Transcripción/fisiología , Ascomicetos/genética , Ascomicetos/patogenicidad , Brassica napus/microbiología , Esporas Fúngicas/genética , Factores de Virulencia/genética
8.
BMC Genomics ; 15: 891, 2014 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-25306241

RESUMEN

BACKGROUND: Many plant-pathogenic fungi have a tendency towards genome size expansion, mostly driven by increasing content of transposable elements (TEs). Through comparative and evolutionary genomics, five members of the Leptosphaeria maculans-Leptosphaeria biglobosa species complex (class Dothideomycetes, order Pleosporales), having different host ranges and pathogenic abilities towards cruciferous plants, were studied to infer the role of TEs on genome shaping, speciation, and on the rise of better adapted pathogens. RESULTS: L. maculans 'brassicae', the most damaging species on oilseed rape, is the only member of the species complex to have a TE-invaded genome (32.5%) compared to the other members genomes (<4%). These TEs had an impact at the structural level by creating large TE-rich regions and are suspected to have been instrumental in chromosomal rearrangements possibly leading to speciation. TEs, associated with species-specific genes involved in disease process, also possibly had an incidence on evolution of pathogenicity by promoting translocations of effector genes to highly dynamic regions and thus tuning the regulation of effector gene expression in planta. CONCLUSIONS: Invasion of L. maculans 'brassicae' genome by TEs followed by bursts of TE activity allowed this species to evolve and to better adapt to its host, making this genome species a peculiarity within its own species complex as well as in the Pleosporales lineage.


Asunto(s)
Adaptación Fisiológica/genética , Ascomicetos/genética , Ascomicetos/fisiología , Elementos Transponibles de ADN/genética , Evolución Molecular , Interacciones Huésped-Patógeno , Plantas/microbiología , Ascomicetos/metabolismo , Ascomicetos/patogenicidad , Cromosomas Fúngicos/genética , Secuencia Conservada/genética , Genes Fúngicos/genética , Genómica , Familia de Multigenes/genética , Filogenia , Especificidad de la Especie , Sintenía/genética
9.
PLoS Genet ; 10(3): e1004227, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24603691

RESUMEN

Plant pathogens secrete an arsenal of small secreted proteins (SSPs) acting as effectors that modulate host immunity to facilitate infection. SSP-encoding genes are often located in particular genomic environments and show waves of concerted expression at diverse stages of plant infection. To date, little is known about the regulation of their expression. The genome of the Ascomycete Leptosphaeria maculans comprises alternating gene-rich GC-isochores and gene-poor AT-isochores. The AT-isochores harbor mosaics of transposable elements, encompassing one-third of the genome, and are enriched in putative effector genes that present similar expression patterns, namely no expression or low-level expression during axenic cultures compared to strong induction of expression during primary infection of oilseed rape (Brassica napus). Here, we investigated the involvement of one specific histone modification, histone H3 lysine 9 methylation (H3K9me3), in epigenetic regulation of concerted effector gene expression in L. maculans. For this purpose, we silenced the expression of two key players in heterochromatin assembly and maintenance, HP1 and DIM-5 by RNAi. By using HP1-GFP as a heterochromatin marker, we observed that almost no chromatin condensation is visible in strains in which LmDIM5 was silenced by RNAi. By whole genome oligoarrays we observed overexpression of 369 or 390 genes, respectively, in the silenced-LmHP1 and -LmDIM5 transformants during growth in axenic culture, clearly favouring expression of SSP-encoding genes within AT-isochores. The ectopic integration of four effector genes in GC-isochores led to their overexpression during growth in axenic culture. These data strongly suggest that epigenetic control, mediated by HP1 and DIM-5, represses the expression of at least part of the effector genes located in AT-isochores during growth in axenic culture. Our hypothesis is that changes of lifestyle and a switch toward pathogenesis lift chromatin-mediated repression, allowing a rapid response to new environmental conditions.


Asunto(s)
Ascomicetos/genética , Epigénesis Genética/genética , Heterocromatina/genética , Enfermedades de las Plantas/genética , Ascomicetos/patogenicidad , Brassica napus/genética , Brassica napus/microbiología , Regulación Fúngica de la Expresión Génica , N-Metiltransferasa de Histona-Lisina/genética , Histonas/genética , Metilación
10.
New Phytol ; 198(3): 887-898, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23406519

RESUMEN

Phytopathogenic fungi frequently contain dispensable chromosomes, some of which contribute to host range or pathogenicity. In Leptosphaeria maculans, the stem canker agent of oilseed rape (Brassica napus), the minichromosome was previously suggested to be dispensable, without evidence for any role in pathogenicity. Using genetic and genomic approaches, we investigated the inheritance and molecular determinant of an L. maculans-Brassica rapa incompatible interaction. Single gene control of the resistance was found, while all markers located on the L. maculans minichromosome, absent in the virulent parental isolate, co-segregated with the avirulent phenotype. Only one candidate avirulence gene was identified on the minichromosome, validated by complementation experiments and termed AvrLm11. The minichromosome was frequently lost following meiosis, but the frequency of isolates lacking it remained stable in field populations sampled at a 10-yr time interval, despite a yearly sexual stage in the L. maculans life cycle. This work led to the cloning of a new 'lost in the middle of nowhere' avirulence gene of L. maculans, interacting with a B. rapa resistance gene termed Rlm11 and introgressed into B. napus. It demonstrated the dispensability of the L. maculans minichromosome and suggested that its loss generates a fitness deficit.


Asunto(s)
Ascomicetos/genética , Ascomicetos/patogenicidad , Brassica rapa/microbiología , Cromosomas Fúngicos/genética , Genes Fúngicos , Interacciones Huésped-Patógeno/genética , Brassica napus/genética , Brassica napus/microbiología , Brassica rapa/genética , Clonación Molecular , Cruzamientos Genéticos , Resistencia a la Enfermedad/genética , Meiosis , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Virulencia/genética
11.
G3 (Bethesda) ; 2(8): 891-904, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22908038

RESUMEN

The ever-increasing generation of sequence data is accompanied by unsatisfactory functional annotation, and complex genomes, such as those of plants and filamentous fungi, show a large number of genes with no predicted or known function. For functional annotation of unknown or hypothetical genes, the production of collections of mutants using Agrobacterium tumefaciens-mediated transformation (ATMT) associated with genotyping and phenotyping has gained wide acceptance. ATMT is also widely used to identify pathogenicity determinants in pathogenic fungi. A systematic analysis of T-DNA borders was performed in an ATMT-mutagenized collection of the phytopathogenic fungus Leptosphaeria maculans to evaluate the features of T-DNA integration in its particular transposable element-rich compartmentalized genome. A total of 318 T-DNA tags were recovered and analyzed for biases in chromosome and genic compartments, existence of CG/AT skews at the insertion site, and occurrence of microhomologies between the T-DNA left border (LB) and the target sequence. Functional annotation of targeted genes was done using the Gene Ontology annotation. The T-DNA integration mainly targeted gene-rich, transcriptionally active regions, and it favored biological processes consistent with the physiological status of a germinating spore. T-DNA integration was strongly biased toward regulatory regions, and mainly promoters. Consistent with the T-DNA intranuclear-targeting model, the density of T-DNA insertion correlated with CG skew near the transcription initiation site. The existence of microhomologies between promoter sequences and the T-DNA LB flanking sequence was also consistent with T-DNA integration to host DNA mediated by homologous recombination based on the microhomology-mediated end-joining pathway.


Asunto(s)
Ascomicetos/genética , Cromosomas/metabolismo , ADN Bacteriano/metabolismo , Genoma , Cromosomas/química , ADN Bacteriano/química , Plantas/microbiología , Regiones Promotoras Genéticas , Alineación de Secuencia
12.
Nat Commun ; 2: 202, 2011 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-21326234

RESUMEN

Fungi are of primary ecological, biotechnological and economic importance. Many fundamental biological processes that are shared by animals and fungi are studied in fungi due to their experimental tractability. Many fungi are pathogens or mutualists and are model systems to analyse effector genes and their mechanisms of diversification. In this study, we report the genome sequence of the phytopathogenic ascomycete Leptosphaeria maculans and characterize its repertoire of protein effectors. The L. maculans genome has an unusual bipartite structure with alternating distinct guanine and cytosine-equilibrated and adenine and thymine (AT)-rich blocks of homogenous nucleotide composition. The AT-rich blocks comprise one-third of the genome and contain effector genes and families of transposable elements, both of which are affected by repeat-induced point mutation, a fungal-specific genome defence mechanism. This genomic environment for effectors promotes rapid sequence diversification and underpins the evolutionary potential of the fungus to adapt rapidly to novel host-derived constraints.


Asunto(s)
Ascomicetos/genética , Ascomicetos/patogenicidad , Variación Genética , Genoma Fúngico/genética , Filogenia , Mutación Puntual/genética , Factores de Transcripción/genética , Composición de Base/genética , Secuencia de Bases , Biología Computacional , Elementos Transponibles de ADN/genética , Anotación de Secuencia Molecular , Datos de Secuencia Molecular , Análisis de Secuencia de ADN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA