Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Chembiochem ; 15(1): 80-6, 2014 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-24302683

RESUMEN

Cytochrome P450cam (P450cam) is a heme-containing monooxygenase that catalyzes the hydroxylation of D-camphor to produce 5-exo-hydroxycamphor. The catalytic cycle of P450cam requires two electrons, both of which are donated by putidaredoxin (Pdx), a ferredoxin containing a [2 Fe-2 S] cluster. Atomic-resolution structures of the Pdx-P450cam complex have recently been solved by X-ray crystallography and paramagnetic NMR spectroscopy. The binding interface showed the potential electron transfer pathways and interactions between Pdx Asp38 and P450cam Arg112, as well as hydrophobic contacts between the Pdx Trp106 and P450cam residues. Several polar residues not previously recognized as relevant for binding were found in the interface. In this study, site-directed mutagenesis, kinetic measurements, and NMR studies were employed to probe the energetic importance and role of the polar residues in the Pdx-P450cam interaction. A double mutant cycle (DMC) analysis of kinetic data shows that favorable interactions exist between Pdx Tyr33 and P450cam Asp125, as well as between Pdx Ser42 and P450cam His352. The results show that alanine substitutions of these residues and several others do not influence the rates of electron transfer. It is concluded that these polar interactions contribute to partner recognition rather than to electronic coupling of the redox centers.


Asunto(s)
Alcanfor 5-Monooxigenasa/metabolismo , Ferredoxinas/metabolismo , Sitios de Unión , Alcanfor 5-Monooxigenasa/química , Alcanfor 5-Monooxigenasa/genética , Transporte de Electrón , Ferredoxinas/química , Ferredoxinas/genética , Cinética , Modelos Moleculares , Mutagénesis Sitio-Dirigida , Resonancia Magnética Nuclear Biomolecular , Unión Proteica , Estructura Terciaria de Proteína , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/química , Proteínas Recombinantes/genética
2.
J Mol Biol ; 425(22): 4353-65, 2013 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-23856620

RESUMEN

Cytochrome P450cam catalyzes the hydroxylation of camphor in a complex process involving two electron transfers (ETs) from the iron-sulfur protein putidaredoxin. The enzymatic control of the successive steps of catalysis is critical for a highly efficient reaction. The injection of the successive electrons is part of the control system. To understand the molecular interactions between putidaredoxin and cytochrome P450cam, we determined the structure of the complex both in solution and in the crystal state. Paramagnetic NMR spectroscopy using lanthanide tags yielded 446 structural restraints that were used to determine the solution structure. An ensemble of 10 structures with an RMSD of 1.3Å was obtained. The crystal structure of the complex was solved, showing a position of putidaredoxin that is identical with the one in the solution structure. The NMR data further demonstrate the presence of a minor state or set of states of the complex in solution, which is attributed to the presence of an encounter complex. The structure of the major state shows a small binding interface and a metal-to-metal distance of 16Å, with two pathways that provide strong electronic coupling of the redox centers. The interpretation of these results is discussed in the context of ET. The structure indicates that the ET rate can be much faster than the reported value, suggesting that the process may be gated.


Asunto(s)
Alcanfor 5-Monooxigenasa/química , Ferredoxinas/química , Complejos Multiproteicos/química , Alcanfor 5-Monooxigenasa/metabolismo , Cristalografía por Rayos X , Ferredoxinas/metabolismo , Espectroscopía de Resonancia Magnética , Modelos Moleculares , Unión Proteica , Conformación Proteica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA