Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Mol Recognit ; 34(5): e2885, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33401335

RESUMEN

More recently, there has been a paradigm shift toward selective drug targeting in the treatment of neurological disorders, including drug addiction, schizophrenia, and Parkinson's disease mediated by the different dopamine receptor subtypes. Antagonists with higher selectivity for D3 dopamine receptor (D3DR) over D2 dopamine receptor (D2DR) have been shown to attenuate drug-seeking behavior and associated side effects compared to non-subtype selective antagonists. However, high conservations among constituent residues of both proteins, particularly at the ligand-binding pockets, remain a challenge to therapeutic drug design. Recent studies have reported the discovery of two small-molecules R-VK4-40 and Y-QA31 which substantially inhibited D3DR with >180-fold selectivity over D2DR. Therefore, in this study, we seek to provide molecular and structural insights into these differential binding mechanistic using meta-analytic computational simulation methods. Findings revealed that R-VK4-40 and Y-QA31 adopted shallow binding modes and were more surface-exposed at D3DR while on the contrary, they exhibited deep hydrophobic pocket binding at D2DR. Also, two non-conserved residues; Tyr361.39 and Ser18245.51 were identified in D3DR, based on their crucial roles and contributions to the selective binding of R-VK4-40 and Y-QA31. Importantly, both antagonists exhibited high affinities in complex with D3DR compared to D2DR, while van der Waals energies contributed majorly to their binding and stability. Structural analyses also revealed the distinct stabilizing effects of both compounds on D3DR secondary architecture relative to D2DR. Therefore, findings herein pinpointed the origin and mechanistic of selectivity of the compounds, which may assist in the rational design of potential small molecules of the D2 -like dopamine family receptor subtype with improved potency and selectivity.


Asunto(s)
Benzotiazoles/química , Indoles/química , Piperazinas/química , Receptores de Dopamina D2/química , Receptores de Dopamina D2/metabolismo , Receptores de Dopamina D3/química , Receptores de Dopamina D3/metabolismo , Benzotiazoles/farmacología , Sitios de Unión , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Indoles/farmacología , Modelos Moleculares , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Estructura Molecular , Piperazinas/farmacología , Unión Proteica , Conformación Proteica , Receptores de Dopamina D2/agonistas , Receptores de Dopamina D3/agonistas , Relación Estructura-Actividad
2.
Med Chem ; 2020 12 08.
Artículo en Inglés | MEDLINE | ID: mdl-33292125

RESUMEN

Since the authors are not responding to the editor's requests to fulfill the editorial requirement, therefore, the article has been withdrawn by mutual agreement between the editors and the publisher.Bentham Science apologizes to the readers of the journal for any inconvenience this may have caused.The Bentham Editorial Policy on Article Withdrawal can be found at https://benthamscience.com/editorial-policies-main.php Bentham Science Disclaimer: It is a condition of publication that manuscripts submitted to this journal have not been published and will not be simultaneously submitted or published elsewhere. Furthermore, any data, illustration, structure or table that has been published elsewhere must be reported, and copyright permission for reproduction must be obtained. Plagiarism is strictly forbidden, and by submitting the article for publication the authors agree that the publishers have the legal right to take appropriate action against the authors, if plagiarism or fabricated information is discovered. By submitting a manuscript, the authors agree that the copyright of their article is transferred to the publishers if and when the article is accepted for publication.

3.
Mol Inform ; 38(11-12): e1900044, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31433121

RESUMEN

Dopamine receptors constitute a unique class of G-protein coupled receptors that mediate the activities of dopamine, a neurotransmitter implicated in diverse neurological diseases when dysregulated. Over the years, antipsychotic drugs have been primarily directed towards D2 dopamine receptor (DRD2) while associable adverse effects have been centred on non-selective targeting. The recent crystal structure of DRD2 in complex with atypical antipsychotic could further aid the structure-based design of highly DRD2-selective antipsychotics. Therefore, in this study, we comprehensively investigate the molecular recognition and differential binding landscapes of class-I and II DRD2 atypical antipsychotics, using membrane-bilayer molecular dynamics simulation and binding free energy techniques. Findings revealed that selected class-I antipsychotics exhibited binding dynamics and poses dissimilar to the class-II types with different interactive mechanisms at the binding cavity of DRD2. More interestingly, the class-II drugs established a highly coordinated binding at the DRD2 active site with a pertinent and recurrent involvement of Asp114 via strong hydrogen interactions. Furthermore, while these compounds exert distinct effects on DRD2 structure, findings revealed that the class-II types favourably engaged the deep hydrophobic pocket of DRD2 compared to the class-I drugs. We speculate that these findings will be fundamental to the discovery of highly selective DRD2 antipsychotics.


Asunto(s)
Antipsicóticos/farmacología , Receptores de Dopamina D2/metabolismo , Risperidona/farmacología , Antipsicóticos/química , Descubrimiento de Drogas , Humanos , Modelos Moleculares , Estructura Molecular , Receptores de Dopamina D2/química , Risperidona/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA