Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Diabetes ; 69(10): 2094-2111, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32366681

RESUMEN

Cardiac glucose uptake and oxidation are reduced in diabetes despite hyperglycemia. Mitochondrial dysfunction contributes to heart failure in diabetes. It is unclear whether these changes are adaptive or maladaptive. To directly evaluate the relationship between glucose delivery and mitochondrial dysfunction in diabetic cardiomyopathy, we generated transgenic mice with inducible cardiomyocyte-specific expression of the GLUT4. We examined mice rendered hyperglycemic following low-dose streptozotocin prior to increasing cardiomyocyte glucose uptake by transgene induction. Enhanced myocardial glucose in nondiabetic mice decreased mitochondrial ATP generation and was associated with echocardiographic evidence of diastolic dysfunction. Increasing myocardial glucose delivery after short-term diabetes onset exacerbated mitochondrial oxidative dysfunction. Transcriptomic analysis revealed that the largest changes, driven by glucose and diabetes, were in genes involved in mitochondrial function. This glucose-dependent transcriptional repression was in part mediated by O-GlcNAcylation of the transcription factor Sp1. Increased glucose uptake induced direct O-GlcNAcylation of many electron transport chain subunits and other mitochondrial proteins. These findings identify mitochondria as a major target of glucotoxicity. They also suggest that reduced glucose utilization in diabetic cardiomyopathy might defend against glucotoxicity and caution that restoring glucose delivery to the heart in the context of diabetes could accelerate mitochondrial dysfunction by disrupting protective metabolic adaptations.


Asunto(s)
Diabetes Mellitus , Cardiomiopatías Diabéticas , Animales , Cardiomiopatías Diabéticas/genética , Ácidos Grasos , Glucosa , Ratones , Mitocondrias , Miocardio
2.
J Mol Cell Cardiol ; 89(Pt B): 297-305, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26476238

RESUMEN

Phosphoinositide-dependent protein kinase-1 (PDPK1) is an important mediator of phosphatidylinositol 3-kinase (PI3K) signaling. We previously reported that PI3K but not Akt signaling mediates the increase in mitochondrial oxidative capacity following physiological cardiac hypertrophy. To determine if PDPK1 regulates these metabolic adaptations we examined mice with cardiomyocyte-specific heterozygous knockout of PDPK1 (cPDPK1(+/-)) after 5 wk. exercise swim training. Akt phosphorylation at Thr308 increased by 43% in wildtype (WT) mice but not in cPDPK1(+/-) mice following exercise training. Ventricular contractile function was not different between WT and cPDPK1(+/-) mice at baseline. In addition, exercise did not influence ventricular function in WT or cPDPK1(+/-) mice. Heart weight normalized to tibia length ratios increased by 13.8% in WT mice (6.2±0.2 vs. 7.1±0.2, P=0.001), but not in cPDPK1(+/-) (6.2±0.3 vs. 6.5±0.2, P=0.20) mice after swim training. Diastolic LV dimension increased in WT mice (3.7±0.1 vs. 4.0±0.1 mm, P=0.01) but not in cPDPK1(+/-) (3.8±0.1 vs. 3.7±0.1 mm, P=0.56) following swim training. Maximal mitochondrial oxygen consumption (VADP, nmol/min/mg) using palmitoyl carnitine as a substrate was significantly increased in mice of all genotypes following swim training (WT: 13.6±0.6 vs.16.1±0.9, P=0.04; cPDPK1(+/-): 12.4±0.6 vs.15.9±1.2, P=0.04). These findings suggest that PDPK1 is required for exercise-induced cardiac hypertrophy but does not contribute to exercise-induced increases in mitochondrial function.


Asunto(s)
Proteínas Quinasas Dependientes de 3-Fosfoinosítido/metabolismo , Adaptación Fisiológica , Cardiomegalia/enzimología , Cardiomegalia/patología , Mitocondrias Cardíacas/metabolismo , Condicionamiento Físico Animal , Animales , Cateterismo Cardíaco , Cardiomegalia/complicaciones , Cardiomegalia/fisiopatología , Eliminación de Gen , Insuficiencia Cardíaca/complicaciones , Insuficiencia Cardíaca/diagnóstico por imagen , Insuficiencia Cardíaca/patología , Insuficiencia Cardíaca/fisiopatología , Homocigoto , Insulina/farmacología , Ratones Endogámicos C57BL , Ratones Noqueados , Mitocondrias Cardíacas/efectos de los fármacos , Modelos Biológicos , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Tamaño de los Órganos/efectos de los fármacos , Fosforilación/efectos de los fármacos , Fosfotreonina/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal/efectos de los fármacos , Ultrasonografía , Función Ventricular Izquierda/efectos de los fármacos
3.
FASEB J ; 28(8): 3691-702, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24776744

RESUMEN

During pathological hypertrophy, peroxisome proliferator-activated receptor coactivator 1α (PGC-1α) is repressed in concert with reduced mitochondrial oxidative capacity and fatty acid oxidation (FAO). We therefore sought to determine if maintaining or increasing PGC-1α levels in the context of pressure overload hypertrophy (POH) would preserve mitochondrial function and prevent contractile dysfunction. Pathological cardiac hypertrophy was induced using 4 wk of transverse aortic constriction (TAC) in mice overexpressing the human PGC-1α genomic locus via a bacterial artificial chromosome (TG) and nontransgenic controls (Cont). PGC-1α levels were increased by 40% in TG mice and were sustained following TAC. Although TAC-induced repression of FAO genes and oxidative phosphorylation (oxphos) genes was prevented in TG mice, mitochondrial function and ATP synthesis were equivalently impaired in Cont and TG mice after TAC. Contractile function was also equally impaired in Cont and TG mice following TAC, as demonstrated by decreased +dP/dt and ejection fraction and increased left ventricular developed pressure and end diastolic pressure. Conversely, capillary density was preserved, in concert with increased VEGF expression, while apoptosis and fibrosis were reduced in TG relative to Cont mice after TAC. Hence, sustaining physiological levels of PGC-1α expression following POH, while preserving myocardial vascularity, does not prevent mitochondrial and contractile dysfunction.


Asunto(s)
Cardiomegalia/fisiopatología , Neovascularización Fisiológica/fisiología , Factores de Transcripción/fisiología , Adenosina Trifosfato/biosíntesis , Animales , Aorta , Apoptosis , Capilares/ultraestructura , Cardiomegalia/etiología , Constricción , Fibrosis , Humanos , Hipertensión/complicaciones , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos DBA , Ratones Transgénicos , Mitocondrias Cardíacas/fisiología , Contracción Miocárdica/fisiología , Oxidación-Reducción , Fosforilación Oxidativa , Palmitatos/metabolismo , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma , ARN Mensajero/biosíntesis , Proteínas Recombinantes/metabolismo , Volumen Sistólico , Factores de Transcripción/biosíntesis , Factores de Transcripción/genética , Factor A de Crecimiento Endotelial Vascular/biosíntesis , Factor A de Crecimiento Endotelial Vascular/genética , Remodelación Ventricular
4.
J Control Release ; 171(1): 24-32, 2013 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-23806842

RESUMEN

Considerable efforts have been made to exploit cardioprotective drugs and gene delivery systems for myocardial infarction (MI). The promising cardioprotective effects of recombinant human erythropoietin (rHuEPO) protein in animal experiments have not been consistently reproduced in clinical human trials of acute MI; however, the mechanisms underlying the inconsistent discrepancies are not yet fully understood. We hypothesized that the plasmid human erythropoietin gene (phEPO) delivered by our bioreducible polymer might produce cardioprotective effects on post-infarct cardiac remodeling. We demonstrated that intramyocardial delivery of phEPO by an arginine-grafted poly(disulfide amine) (ABP) polymer in infarcted rats preserves cardiac geometry and systolic function. The reduced infarct size of phEPO/ABP delivery was followed by decrease in fibrosis, protection from cardiomyocyte loss, and down-regulation of apoptotic activity. In addition, the increased angiogenesis and decreased myofibroblast density in the border zone of the infarct support the beneficial effects of phEPO/ABP administration. Furthermore, phEPO/ABP delivery induced prominent suppression on Ang II and TGF-ß activity in all subdivisions of cardiac tissues except for the central zone of infarct. These results of phEPO gene therapy delivered by a bioreducible ABP polymer provide insight into the lack of phEPO gene therapy translation in the treatment of acute MI to human trials.


Asunto(s)
Arginina/administración & dosificación , Cardiotónicos/administración & dosificación , Eritropoyetina/genética , Infarto del Miocardio/terapia , Poliaminas/administración & dosificación , Animales , Arginina/química , Cardiotónicos/química , Eritropoyetina/química , Técnicas de Transferencia de Gen , Masculino , Infarto del Miocardio/metabolismo , Infarto del Miocardio/patología , Miocardio/metabolismo , Miocardio/patología , Poliaminas/química , Ratas , Ratas Sprague-Dawley , Remodelación Ventricular
5.
PLoS One ; 8(1): e54221, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23342106

RESUMEN

Mechanistic target of rapamycin (Mtor) is required for embryonic inner cell mass proliferation during early development. However, Mtor expression levels are very low in the mouse heart during embryogenesis. To determine if Mtor plays a role during mouse cardiac development, cardiomyocyte specific Mtor deletion was achieved using α myosin heavy chain (α-MHC) driven Cre recombinase. Initial mosaic expression of Cre between embryonic day (E) 10.5 and E11.5 eliminated a subset of cardiomyocytes with high Cre activity by apoptosis and reduced overall cardiac proliferative capacity. The remaining cardiomyocytes proliferated and expanded normally. However loss of 50% of cardiomyocytes defined a threshold that impairs the ability of the embryonic heart to sustain the embryo's circulatory requirements. As a result 92% of embryos with cardiomyocyte Mtor deficiency died by the end of gestation. Thus Mtor is required for survival and proliferation of cardiomyocytes in the developing heart.


Asunto(s)
Desarrollo Embrionario/fisiología , Corazón/embriología , Serina-Treonina Quinasas TOR/metabolismo , Animales , Western Blotting , Desarrollo Embrionario/genética , Femenino , Ratones , Ratones Noqueados , Serina-Treonina Quinasas TOR/genética
6.
Endocrinology ; 151(8): 3536-42, 2010 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-20501666

RESUMEN

Bradykinin signaling has been proposed to play either protective or deleterious roles in the development of cardiac dysfunction in response to various pathological stimuli. To further define the role of bradykinin signaling in the diabetic heart, we examined cardiac function in mice with genetic ablation of both bradykinin B1 and B2 receptors (B1RB2R(-/-)) in the context of the Akita model of insulin-deficient type 1 diabetes (Ins2(Akita/+)). In 5-month-old diabetic and nondiabetic, wild-type and B1RB2R(-/-) mice, in vivo cardiac contractile function was determined by left-ventricular (LV) catheterization and echocardiography. Reactive oxygen species levels were measured by 2'-7'-dichlorofluorescein diacetate fluorescence. Mitochondrial function and ATP synthesis were determined in saponin-permeabilized cardiac fibers. LV systolic pressure and the peak rate of LV pressure rise and decline were decreased with diabetes but did not deteriorate further with loss of bradykinin signaling. Wall thinning and reduced ejection fractions in Akita mouse hearts were partially attenuated by B1RB2R deficiency, although other parameters of LV function were unaffected. Loss of bradykinin signaling did not increase fibrosis in Ins2(Akita/+) diabetic mouse hearts. Mitochondrial dysfunction was not exacerbated by B1RB2R deficiency, nor was there any additional increase in tissue levels of reactive oxygen species. Thus, loss of bradykinin B2 receptor signaling does not abrogate the previously reported beneficial effect of inhibition of B1 receptor signaling. In conclusion, complete loss of bradykinin expression does not worsen cardiac function or increase myocardial fibrosis in diabetes.


Asunto(s)
Bradiquinina/fisiología , Diabetes Mellitus Experimental/complicaciones , Diabetes Mellitus Tipo 1/complicaciones , Cardiopatías/etiología , Animales , Bradiquinina/metabolismo , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/fisiopatología , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 1/metabolismo , Diabetes Mellitus Tipo 1/fisiopatología , Femenino , Corazón/fisiopatología , Cardiopatías/genética , Cardiopatías/fisiopatología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Mitocondrias Cardíacas/patología , Mitocondrias Cardíacas/fisiología , Miocardio/patología , Estrés Oxidativo/genética , Receptor de Bradiquinina B1/deficiencia , Receptor de Bradiquinina B1/genética , Receptor de Bradiquinina B2/deficiencia , Receptor de Bradiquinina B2/genética , Transducción de Señal/genética , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...