Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Chem Sci ; 10(23): 5884-5892, 2019 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-31360392

RESUMEN

A set of metal-organic trefoil knots (M-TKs) generated by metal-templated self-assembly of a simple pair of chelating ligands were well tolerated in vitro by non-cancer cells but were significantly more potent than cisplatin in both human cancer cells--including those resistant to cisplatin--and in zebrafish embryos. In cultured cells, M-TKs generated reactive oxygen species that triggered apoptosis via the mitochondrial pathway without directly disrupting the cell-membrane or damaging nuclear DNA. The cytotoxicity and wide scope for structural variation of M-TKs indicate the potential of synthetic metal-organic knots as a new field of chemical space for pharmaceutical design and development.

3.
Chemistry ; 24(34): 8648-8655, 2018 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-29665187

RESUMEN

Owing to their chemical and thermal stabilities, high uptake capacities, and easy recyclability, covalent organic polymers (COPs) have shown promise as pollutant sponges. Herein, we describe the use of diazo coupling to synthesize two cationic COPs, COP1++ and COP2++ , that incorporate a viologen-based molecular switch and an organic macrocycle, calix[4]arene. The COPs form nanosheets that have height profiles of 6.00 nm and 8.00 nm, respectively, based on AFM measurements. The sheets remain morphologically intact upon one- or two-electron reductions of their viologen subunits. MD simulations of the COPs containing dicationic viologens indicate that the calix[4]arenes adopt a partial cone conformation and that, in height, the individual 2D polymer layers are 5.48 Šin COP1++ and 5.65 Šin COP2++ , which, together with the AFM measurements, suggests that the nanosheets are composed of 11 and 14 layers, respectively. Whether their viologens are in dicationic, radical cationic, or neutral form, the COPs exhibit high affinity for iodine, reaching up to 200 % mass increase when exposed to iodine vapor at 70 °C, which makes the materials among the best-performing nanosheets for iodine capture reported in the literature. In addition, the COPs effectively remove Congo red from solution in the pH range of 2-10, reaching nearly 100 % removal within 15 minutes at acidic pH.

4.
ACS Appl Mater Interfaces ; 10(20): 17359-17365, 2018 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-29687997

RESUMEN

Calixarenes are a common motif in supramolecular chemistry but have rarely been incorporated in structurally well-defined covalent 2D materials. Such a task is challenging, especially without a template, because of the nonplanar configuration and conformational flexibility of the calixarene ring. Here, we report the first-of-a-kind solvothermal synthesis of a calix[4]arene-based 2D polymer (CX4-NS) that is porous, covalent, and isolated as few-layer thick (3.52 nm) nanosheets. Experimental and theoretical characterization of the nanosheets is presented. Atomic force microscopy and transmission electron microscopy results are consistent with the calculated lowest energy state of the polymer. In the lowest energy state, parallel layers are tightly packed, and the calixarenes adopt the 1,2-alternate conformation, which gives rise to a two-dimensional pattern and a rhombic unit cell. We tested the material's ability to adsorb I2 vapor and observed a maximum capacity of 114 wt %. Molecular simulations extended to model I2 capture showed excellent agreement with experiments. Furthermore, the material was easily regenerated by mild ethanol washings and could be reused with minimal loss of efficiency.

5.
ACS Appl Mater Interfaces ; 10(3): 2976-2981, 2018 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-29308872

RESUMEN

Organic micropollutants are hazards to the environment and human health. Conventional technologies are often inefficient at removing them from wastewater. For example, commercial activated carbon (AC) exhibits slow uptake rates, limited capacities, and is costly to regenerate. Here, we report the utility of porous calix[4]arene-based materials, CalPn (n = 2-4), for water purification. Calixarenes are a common motif in supramolecular chemistry but have rarely been incorporated into extended, porous networks such as organic polymers. CalPn exhibit pollutant uptake rates (kobs) and adsorption capacities (qmax) that are among the highest reported. For example, the kobs of CalP4 for bisphenol A (BPA) is 2.12 mg/g·min, which is significantly higher (16 to 240 times) than kobs for ACs and 1.4 times higher than that of the most efficient material previously reported; the qmax of CalP4 for BPA is 403 mg/g. The CalPn polymers can be regenerated several times, with performance levels left undiminished, by a simple wash procedure that is less energy intensive than that required for ACs. These findings demonstrate the potential of calixarene-based materials for organic micropollutant removal.

6.
Chemistry ; 24(10): 2349-2353, 2018 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-29297954

RESUMEN

Cucurbit[7]uril modified iron oxide nanoparticles (CB[7]NPs) were loaded with palladium to form nano-catalysts (Pd@CB[7]NPs) that, with microwave heating, catalysed Suzuki-Miyaura, Sonogashira, and Mizoroki-Heck cross-coupling reactions. Reactions were run in environmentally benign 1:1 ethanol/water solvent under convenient aerobic conditions. In a preliminary screening, conversions and yields were uniformly high with turn over frequencies (TOF) ranging from 64 to 7360 h-1 . The nano-catalysts could be recovered with a magnet and reused several times (6 times for Suzuki-Miayura reaction) without loss of activity.

7.
Dalton Trans ; 46(47): 16474-16479, 2017 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-29147692

RESUMEN

Topological transformation of a zinc-templated trefoil knot, Zn-TK, into a zinc-templated [2]catenane, Zn-[2]C, was studied. The net reaction 2 Zn-TK→3 Zn-[2]C was accomplished in 89% yield by heating a solution of Zn-TK in D2O. Kinetic investigation by 1H NMR spectroscopy and high resolution mass spectrometry revealed that the mechanism is complex, involving a large pool of intermediates that form after imine bond cleavage. Bromide ions, which can occupy the central cavity of Zn-TK, inhibited the reaction. Two similar transformations were also studied, one of a cadmium-containing trefoil knot, Cd-TK, into a cadmium-containing catenane, Cd-[2]C, and the other of Cd-TK into Zn-[2]C. The latter transformation could be achieved in one step at high temperature or in two steps via transmetallation to form Zn-TK at room temperature followed by topological conversion of Zn-TK to Zn-[2]C at high temperature.

8.
ACS Appl Mater Interfaces ; 9(46): 40006-40016, 2017 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-29035507

RESUMEN

Drug-loaded magnetic nanoparticles were synthesized and used for the sequential delivery of the antiresorptive agent zoledronic acid (Zol) and the cytotoxic drug doxorubicin (Dox) to breast cancer cells (MCF-7). Zol was attached to bare iron oxide nanoparticles (IONPs) via phosphonate coordination to form Z-NPs. The unbound imidazole of Zol was then used to complex the organic macrocycle CB[7] to obtain CZ-NPs. Dox was complexed to the CZ-NPs to form the fully loaded particles (DCZ-NPs), which were stable in solution at 37 °C and physiological pH (7.4). Fluorescence spectroscopy established that Dox is released in solution from DCZ-NPs suddenly (i) when the particles are subjected to magnetically induced heating to 42 °C at low pH (5.0) and (ii) in the presence of glutathione (GSH). Mass spectrometry indicated that Zol is released slowly in solution at low pH after Dox release. Magnetic measurements with a magnetic reader revealed that DCZ-NPs are internalized preferentially by MCF-7 cells versus nonmalignant cells (HEK293). Zol and Dox acted synergistically when delivered by the particles. DCZ-NPs caused a decrease in the viability of MCF-7 cells that was greater than the net decrease caused when the drugs were added to the cells individually at concentrations equivalent to those delivered by the particles. MCF-7 cells were treated with DCZ-NPs and subjected to an alternating magnetic field (AMF) which, with the nanoparticles present, raised the temperature of the cells and triggered the intracellular release of Dox, as indicated by fluorescence activated cell sorting (FACS). The cytotoxic effects of the DCZ-NPs on MCF-7 cells were enhanced 10-fold by AMF-induced heating. DCZ-NPs were also able to completely inhibit MCF-7 cell adhesion and invasion in vitro, indicating the potential of the particles to act as antimetastatic agents. Together these results demonstrate that DCZ-NPs warrant development as a system for combined chemo- and thermo-therapeutic treatment of cancer.


Asunto(s)
Neoplasias de la Mama , Doxorrubicina , Sistemas de Liberación de Medicamentos , Compuestos Férricos , Células HEK293 , Humanos , Células MCF-7 , Nanopartículas del Metal , Ácido Zoledrónico
9.
J Am Chem Soc ; 139(28): 9558-9565, 2017 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-28506068

RESUMEN

Morphology influences the functionality of covalent organic networks and determines potential applications. Here, we report for the first time the use of Zincke reaction to fabricate, under either solvothermal or microwave conditions, a viologen-linked covalent organic network in the form of hollow particles or nanosheets. The synthesized materials are stable in acidic, neutral, and basic aqueous solutions. Under basic conditions, the neutral network assumes radical cationic character without decomposing or changing structure. Solvent polarity and heating method determine product morphology. Depending upon solvent polarity, the resulting polymeric network forms either uniform self-templated hollow spheres (HS) or hollow tubes (HT). The spheres develop via an inside-out Ostwald ripening mechanism. Interestingly, microwave conditions and certain solvent polarities result in the formation of a robust covalent organic gel framework (COGF) that is organized in nanosheets stacked several layers thick. In the gel phase, the nanosheets are crystalline and form honeycomb lattices. The use of the Zincke reaction has previously been limited to the synthesis of small viologen molecules and conjugated viologen oligomers. Its application here expands the repertoire of tools for the fabrication of covalent organic networks (which are usually prepared by dynamic covalent chemistry) and for the synthesis of viologen-based materials. All three materials-HT, HS, and COGF-serve as efficient adsorbents of iodine due to the presence of the cationic viologen linker and, in the cases of HT and HS, permanent porosity.

10.
Chemistry ; 23(35): 8333-8347, 2017 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-28164384

RESUMEN

Paul Ehrlich's vision of a "magic bullet" cure for disease inspires the modern design of nanocarriers whose purpose is to deliver drug cargo to specific sites in the body while circumventing endogenous immunological clearance mechanisms. Iron oxide nanoparticles (IONPs) have emerged as particularly promising nanocarriers because of their biodegradability, ability to be guided magnetically to sites of pathology, mediation of hyperthermic therapy, and imaging capabilities. In this review, we focus on the design and drug-delivery aspects of IONPs coated with organic macrocycles (crown ethers, cyclodextrins, calix[n]arenes, cucurbit[n]urils, or pillar[n]arenes), which, by means of reversible complexation, allow for the convenient loading and release of drug molecules. Macrocycles can be attached to IONPs indirectly or directly. Indirect attachment requires the use of small organic linking molecules or conjugation to shell materials. Direct attachment requires neither. We discuss in detail drug release from the macrocycles, highlighting mechanisms that depend on external stimuli such as changes in pH, the competitive binding of ions or small molecules, or the application of ultrasound or electromagnetic radiation.


Asunto(s)
Antineoplásicos/química , Antineoplásicos/farmacología , Compuestos Férricos/química , Compuestos Macrocíclicos/química , Nanopartículas de Magnetita/química , Animales , Antineoplásicos/efectos adversos , Línea Celular Tumoral , Supervivencia Celular , Medios de Contraste/química , Portadores de Fármacos/química , Liberación de Fármacos , Humanos , Imagen por Resonancia Magnética/métodos , Tamaño de la Partícula , Propiedades de Superficie , Ultrasonografía/métodos
11.
Chemistry ; 22(47): 17020-17028, 2016 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-27739116

RESUMEN

Mesoporous iron-oxide nanoparticles (mNPs) were prepared by using a modified nanocasting approach with mesoporous carbon as a hard template. mNPs were first loaded with doxorubicin (Dox), an anticancer drug, and then coated with the thermosensitive polymer Pluronic F108 to prevent the leakage of Dox molecules from the pores that would otherwise occur under physiological conditions. The Dox-loaded, Pluronic F108-coated system (Dox@F108-mNPs) was stable at room temperature and physiological pH and released its Dox cargo slowly under acidic conditions or in a sudden burst with magnetic heating. No significant toxicity was observed in vitro when Dox@F108-mNPs were incubated with noncancerous cells, a result consistent with the minimal internalization of the particles that occurs with normal cells. On the other hand, the drug-loaded particles significantly reduced the viability of cervical cancer cells (HeLa, IC50 =0.70 µm), wild-type ovarian cancer cells (A2780, IC50 =0.50 µm) and Dox-resistant ovarian cancer cells (A2780/AD, IC50 =0.53 µm). In addition, the treatment of HeLa cells with both Dox@F108-mNPs and subsequent alternating magnetic-field-induced hyperthermia was significantly more effective at reducing cell viability than either Dox or Dox@F108-mNP treatment alone. Thus, Dox@F108-mNPs constitute a novel soft/hard hybrid nanocarrier system that is highly stable under physiological conditions, temperature-responsive, and has chemo- and thermotherapeutic modes of action.


Asunto(s)
Doxorrubicina/administración & dosificación , Doxorrubicina/química , Sistemas de Liberación de Medicamentos/métodos , Compuestos Férricos/química , Nanopartículas de Magnetita/química , Neoplasias Ováricas/terapia , Antineoplásicos/administración & dosificación , Antineoplásicos/química , Antineoplásicos/farmacología , Supervivencia Celular/efectos de los fármacos , Doxorrubicina/farmacología , Estabilidad de Medicamentos , Femenino , Células HeLa , Humanos , Concentración de Iones de Hidrógeno , Hipertermia Inducida , Porosidad , Temperatura
12.
Langmuir ; 32(28): 7144-50, 2016 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-27323835

RESUMEN

Sulfonated surface patches of poly(styrene)-based colloidal particles (CPs) were functionalized with cucurbit[7]uril (CB[7]). The macrocycles served as recognition units for diphenyl viologen (DPV(2+)), a rigid bridging ligand. The addition of DPV(2+) to aqueous suspensions of the particles triggered the self-assembly of short linear and branched chainlike structures. The self-assembly mechanism is based on hydrophobic/ion-charge interactions that are established between DPV(2+) and surface-adsorbed CB[7]. DPV(2+) guides the self-assembly of the CPs by forming a ternary DPV(2+)⊂(CB[7])2 complex in which the two CB[7] macrocycles are attached to two different particles. Viologen-driven particle assembly was found to be both directional and reversible. Whereas sodium chloride triggers irreversible particle disassembly, the one-electron reduction of DPV(2+) with sodium dithionite causes disassembly that can be reversed via air oxidation. Thus, this bottom-up synthetic supramolecular approach allowed for the reversible formation and directional alignment of a 2D colloidal material.

13.
Chem Commun (Camb) ; 52(46): 7398-401, 2016 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-27194510

RESUMEN

Three topologically non-trivial cadmium(ii)-based complexes-Cd-[2]C, Cd-TK and Cd-SL-were simultaneously self-assembled in a dynamic library, individually isolated and fully characterized using solid-state, gas-phase and solution-phase techniques. Post-synthetic modifications, including reduction and transmetalation, were subsequently achieved. Imine bond reduction followed by demetallation led to the isolation of the corresponding organic molecules [2]C, TK and SL. Transmetalation of Cd-TK and Cd-SL with the zinc(ii) cation resulted in isolation of the corresponding zinc(ii)-containing complexes Zn-TK and Zn-SL.

14.
Chem Sci ; 7(4): 2524-2531, 2016 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-28660022

RESUMEN

Two synthetic approaches-temperature variation and anion templation-allowed for the selective formation of a [2]catenane ([2]C4+ ) or a trefoil knot (TK6+ ), or for the enhanced formation of a Solomon link (SL8+ ), all from a simple set of starting materials (Zn(ii) acetate, diformylpyridine (DFP) and a diamino-2,2'-bipyridine (DAB)) in mixed aqueous solutions. The catenane formed exclusively at 90 °C in a 1 : 1 mixed solvent of D2O and MeOD. In the presence of bromide ion as template, TK6+ formed exclusively at 50 °C in the same solvent. In the solid state, TK6+ hosts two bromide ions in its central cavity by forming six Csp2 -H hydrogen bonds. In D2O, TK6+ , which was originally prepared as a trifluoroacetate (TFA) salt, was found to exchange two TFA counterions for two monovalent anions of different sizes and shapes, which lodged within the knot's central cavity. In contrast to bromide, the larger triflate anion (CF3SO3-) promoted the formation of SL8+ , which was characterized by 1H NMR spectroscopy and mass spectrometry. Two dimensional heteronuclear 19F-1H-HOSEY NMR experiments detected CH···F interactions inside the cavity of SL8+ . Thus, the product distribution of this dynamic link forming system is sensitive to temperature and the size and shape of the anion template, and one of the products, TK6+ , is capable of binding a variety of monovalent anions in D2O with high affinity (with log ß2 values of 4 to 6 being typical).

15.
Chem Commun (Camb) ; 51(27): 5840-3, 2015 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-25664727

RESUMEN

Stereoisomerization and the unprecedented phenomenon of metal translocation in the absence of redox processes were probed in two inherently chiral bimetallic [2]catenanes by using a combination of variable-temperature (1)H NMR and CD spectroscopies, X-ray crystallography, and DFT calculations.


Asunto(s)
Catenanos/química , Complejos de Coordinación/química , Zinc/química , Cationes Bivalentes , Cristalografía por Rayos X , Espectroscopía de Resonancia Magnética , Modelos Moleculares , Conformación Molecular , Estereoisomerismo , Termodinámica
16.
Chemistry ; 21(12): 4607-13, 2015 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-25582844

RESUMEN

Magnetic and fluorescent assemblies of iron-oxide nanoparticles (NPs) were constructed by threading a viologen-based ditopic ligand, DPV(2+), into the cavity of cucurbituril (CB[7]) macrocycles adsorbed on the surface of the NPs. Evidence for the formation of 1:2 inclusion complexes that involve DPV(2+) and two CB[7] macrocycles was first obtained in solution by (1)H NMR and emission spectroscopy. DPV(2+) was found to induce self-assembly of nanoparticle arrays (DPV(2+)⊂CB[7]NPs) by bridging CB[7] molecules on different NPs. The resulting viologen-crosslinked iron-oxide nanoparticles exhibited increased saturation magnetization and emission properties. This facile supramolecular approach to NP self-assembly provides a platform for the synthesis of smart and innovative materials that can achieve a high degree of functionality and complexity and that are needed for a wide range of applications.

17.
Chemistry ; 20(24): 7334-44, 2014 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-24806551

RESUMEN

Suppression of the dimerization of the viologen radical cation by cucurbit[7]uril (CB7) in water is a well-known phenomenon. Herein, two counter-examples are presented. Two viologen-containing thread molecules were designed, synthesized, and thoroughly characterized by (1)H DOSY NMR spectrometry, UV/Vis absorption spectrophotometry, square-wave voltammetry, and chronocoulometry: BV(4+), which contains two viologen subunits, and HV(12+), which contains six. In both threads, the viologen subunits are covalently bonded to a hexavalent phosphazene core. The corresponding [3]- and [7]pseudorotaxanes that form on complexation with CB7, that is, BV(4+)⊂(CB7)2 and HV(12+)⊂(CB7)6, were also analyzed. The properties of two monomeric control threads, namely, methyl viologen (MV(2+)) and benzyl methyl viologen (BMV(2+)), as well as their [2]pseudorotaxane complexes with CB7 (MV(2+)⊂CB7 and BMV(2+)⊂CB7) were also investigated. As expected, the control pseudorotaxanes remained intact after one-electron reduction of their viologen-recognition stations. In contrast, analogous reduction of BV(4+)⊂(CB7)2 and HV(12+)⊂(CB7)6 led to host-guest decomplexation and release of the free threads BV(2(·+)) and HV(6(·+)), respectively. (1)H DOSY NMR spectrometric and chronocoulometric measurements showed that BV(2(·+)) and HV(6(·+)) have larger diffusion coefficients than the corresponding [3]- and [7]pseudorotaxanes, and UV/Vis absorption studies provided evidence for intramolecular radical-cation dimerization. These results demonstrate that radical-cation dimerization, a relatively weak interaction, can be used as a driving force in novel molecular switches.


Asunto(s)
Rotaxanos/síntesis química , Cationes , Dimerización , Modelos Moleculares , Estructura Molecular , Rotaxanos/química
18.
Org Biomol Chem ; 12(4): 607-14, 2014 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-24287562

RESUMEN

The mechanism and thermodynamic functions of the self-assembly of a family of covalently linked oligomeric naphthalenediimides (NDIs) were investigated through variable-temperature NMR and CD studies. The NDIs were shown to self-assemble into helical supramolecular nanotubes via an isodesmic polymerisation mechanism, and regardless of the oligomer length a surprising entropy-enthalpy compensation was observed.


Asunto(s)
Imidas/química , Nanotubos/química , Naftalenos/química , Termodinámica , Aminoácidos/química , Imidas/síntesis química , Sustancias Macromoleculares/síntesis química , Sustancias Macromoleculares/química , Modelos Moleculares , Estructura Molecular , Naftalenos/síntesis química
19.
Angew Chem Int Ed Engl ; 52(38): 9956-60, 2013 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-23832610

RESUMEN

A topological triptych: Three molecular links, a [2]catenane, a trefoil knot, and a Solomon link, were obtained in one pot through the self-assembly of two simple ligands in the presence of Zn(II). The approach relied on dynamic covalent chemistry and metal templation.


Asunto(s)
Catenanos/química , Ligandos , Modelos Moleculares , Estructura Molecular , Conformación Proteica , Pliegue de Proteína , Estructura Secundaria de Proteína
20.
J Mater Chem B ; 1(38): 5076-5082, 2013 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-32261098

RESUMEN

Iron oxide (γ-Fe2O3) nanoparticles (NPs) were efficiently coated with the water soluble macrocycle cucurbit[7]uril (CB[7]) by microwave heating. Density functional theory (DFT) calculations support a binding model in which the carbonyl oxygens of CB[7] coordinate directly to surface Fe3+ ions. The modified particles (CB[7]NPs) are stable under a wide pH range (2-12) and have a transverse relaxivity, R2, of 113 s-1 mM-1. Nile red (NR) dye was loaded into the cavities of the surface-adsorbed CB[7]s, and intracellular delivery of the dye to HCT116 cells was observed by confocal laser scanning microscopy. The dye-loaded particles (CB[7]NPs⊃NR) have a R2 of 172 s-1 mM-1. The stability, biocompatibility, and dual purpose functionality (drug delivery and magnetic resonance imaging) of the CB[7]NPs herald the theranostic potential of this system.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA