Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 217
Filtrar
1.
Artículo en Inglés | MEDLINE | ID: mdl-38822789

RESUMEN

In view of the increasing global demand and consumption of gold, there is a growing need and effort to extract gold from alternative sources besides conventional mining, e.g., from water. This drive is mainly due to the potential benefits for the economy and the environment as these sources contain large quantities of the precious metal that can be utilized. Wastewater is one of these valuable sources in which the gold concentration can be in the ppb range. However, the effective selective recovery and recycling of ultratrace amounts of this metal remain a challenge. In this article, we describe the development of a covalent imine-based organic framework with pores containing thioanisole functional groups (TTASDFPs) formed by the condensation of a triazine-based triamine and an aromatic dialdehyde. The sulfur-functionalized pores served as effective chelating agents to bind Au3+ ions, as evidenced by the uptake of more than 99% of the 9 ppm Au3+ solution within 2 min. This is relatively fast kinetics compared with other adsorbents reported for gold adsorption. TTASDFP also showed a high removal capacity of 245 mg·g-1 and a clear selectivity toward gold ions. More importantly, the material can capture gold at concentrations as low as 1 ppb.

2.
J Exp Bot ; 75(13): 3993-4004, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38634646

RESUMEN

Hypoallometric (slope<1) scaling between metabolic rate and body mass is often regarded as near-universal across organisms. However, there are compelling reasons to question hypoallometric scaling in woody plants, where metabolic rate is directly proportional to leaf area. This leaf area must provide carbon to the volume of the metabolically active sapwood (VMASW). Within populations of a species, variants in which VMASW increases per unit leaf area with height growth (e.g. ⅔ or ¾ scaling) would have proportionally less carbon for growth and reproduction as they grow taller. Therefore, selection should favor individuals in which, as they grow taller, leaf area scales isometrically with shoot VMASW (slope=1). Using tetrazolium staining, we measured total VMASW and total leaf area (LAtot) across 22 individuals of Ricinus communis and confirmed that leaf area scales isometrically with VMASW, and that VMASW is much smaller than total sapwood volume. With the potential of the LAtot-VMASW relationship to shape factors as diverse as the crown area-stem diameter relationship, conduit diameter scaling, reproductive output, and drought-induced mortality, our work indicates that the notion that sapwood increases per unit leaf area with height growth requires revision.


Asunto(s)
Biomasa , Hojas de la Planta , Árboles , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/metabolismo , Hojas de la Planta/anatomía & histología , Árboles/crecimiento & desarrollo , Árboles/metabolismo , Ricinus/crecimiento & desarrollo , Ricinus/metabolismo , Madera/crecimiento & desarrollo , Madera/metabolismo
3.
Ann Bot ; 134(1): 19-42, 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38634673

RESUMEN

BACKGROUND: The mechanisms leading to dieback and death of trees under drought remain unclear. To gain an understanding of these mechanisms, addressing major empirical gaps regarding tree structure-function relations remains essential. SCOPE: We give reasons to think that a central factor shaping plant form and function is selection simultaneously favouring constant leaf-specific conductance with height growth and isometric (1:1) scaling between leaf area and the volume of metabolically active sink tissues ('sapwood'). Sapwood volume-leaf area isometry implies that per-leaf area sapwood volumes become transversely narrower with height growth; we call this 'stretching'. Stretching means that selection must favour increases in permeability above and beyond that afforded by tip-to-base conduit widening ("ultra-widening permeability"), via fewer and wider vessels or tracheids with larger pits or larger margo openings. Leaf area-metabolically active sink tissue isometry would mean that it is unlikely that larger trees die during drought because of carbon starvation due to greater sink-source relationships as compared to shorter plants. Instead, an increase in permeability is most plausibly associated with greater risk of embolism, and this seems a more probable explanation of the preferential vulnerability of larger trees to climate change-induced drought. Other implications of selection favouring constant per-leaf area sapwood construction and maintenance costs are departure from the da Vinci rule expectation of similar sapwood areas across branching orders, and that extensive conduit furcation in the stem seems unlikely. CONCLUSIONS: Because all these considerations impact the likelihood of vulnerability to hydraulic failure versus carbon starvation, both implicated as key suspects in forest mortality, we suggest that these predictions represent essential priorities for empirical testing.


Asunto(s)
Árboles , Árboles/fisiología , Árboles/crecimiento & desarrollo , Árboles/anatomía & histología , Hojas de la Planta/fisiología , Hojas de la Planta/anatomía & histología , Hojas de la Planta/crecimiento & desarrollo , Permeabilidad , Sequías , Modelos Biológicos , Madera/fisiología , Madera/anatomía & histología , Agua/fisiología , Agua/metabolismo
5.
Small ; : e2311064, 2024 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-38396219

RESUMEN

Visual sensing of humidity and temperature by solids plays an important role in the everyday life and in industrial processes. Due to their hydrophobic nature, most covalent organic framework (COF) sensors often exhibit poor optical response when exposed to moisture. To overcome this challenge, the optical response is set out to improve, to moisture by incorporating H-bonding ionic functionalities into the COF network. A highly sensitive COF, consisting of guanidinium and diformylpyridine linkers (TG-DFP), capable of detecting changes in temperature and moisture content is fabricated. The hydrophilic nature of the framework enables enhanced water uptake, allowing the trapped water molecules to form a large number of hydrogen bonds. Despite the presence of non-emissive building blocks, the H-bonds restrict internal bond rotation within the COF, leading to reversible fluorescence and solid-state optical hydrochromism in response to relative humidity and temperature.

6.
Evolution ; 78(3): 480-496, 2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38150399

RESUMEN

Greater diversity in functional morphology should be associated with the evolution of greater ontogenetic diversity, an expectation difficult to test in most long-lived wild organisms. In the cells derived from the wood meristem (vascular cambium), plants provide extraordinary systems for reconstructing ontogenies in often long-lived organisms. The vascular cambium produces files of cells from the stem center to the periphery, with each cambial derivative "deciding" which of four cell types it differentiates into. Wood cell files remain in place, allowing tracing of the ontogenetic "decisions" taken throughout the life of a stem. We compared cell files from the Pedilanthus clade (genus Euphorbia), which span a range of growth forms from small trees and shrubs of tropical habitats to desert succulents. Using language theory, we represented wood cell types as "letters" and combinations of cell types in cell files as "words," allowing us to measure the diversity of decisions based on word frequency matrices. We also used information content metrics to compare levels of predictability in "decision-making." Our analyses identified a wider array of developmental decisions in woody trees as compared to succulent shrubs, illustrating ways that woody plants provide unparalleled systems for studying the evolution of ontogeny in long-lived, non-model species.


Asunto(s)
Plantas , Madera , Cámbium/anatomía & histología , Árboles/anatomía & histología , Ecosistema
7.
PLoS Negl Trop Dis ; 17(10): e0011422, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37856569

RESUMEN

Japanese encephalitis virus (JEV) continues to circulate throughout Southeast Asia and the Western Pacific where approximately 3 billion people in 24 countries are at risk of infection. Surveillance targeting the mosquito vectors of JEV was conducted at four military installations on Okinawa, Japan, between 2016 and 2021. Out of a total of 10,426 mosquitoes from 20 different species, zero were positive for JEV. The most abundant mosquito species collected were Aedes albopictus (36.4%) followed by Culex sitiens (24.3%) and Armigeres subalbatus (19%). Statistically significant differences in mosquito species populations according to location were observed. Changes in land use over time appear to be correlated with the species and number of mosquitoes trapped in each location. JEV appears to be absent from mosquito populations on Okinawa, but further research on domestic pigs and ardeid birds is warranted.


Asunto(s)
Aedes , Culex , Virus de la Encefalitis Japonesa (Especie) , Encefalitis Japonesa , Personal Militar , Humanos , Animales , Porcinos , Encefalitis Japonesa/diagnóstico , Encefalitis Japonesa/epidemiología , Encefalitis Japonesa/veterinaria , Sus scrofa , Mosquitos Vectores
8.
PLoS One ; 18(9): e0291945, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37756353

RESUMEN

Knowing how species and communities respond to environmental change is fundamental in the context of climate change. The search for patterns of abundance and phenotypic variation along altitudinal gradients can provide evidence on adaptive limits. We evaluated the species abundance and the variation in morphometric and stomatal characters in five tree ferns species (Cyathea fulva, C. divergens, C. myosuroides, Alsophila firma and Gymnosphaera salvinii) distributed along an elevation gradient in a well-preserved Mexican cloud forest. Variation at the community and species level was assessed using exploratory and multivariate data analysis methods. We wanted to explore if the species abundance is environmentally determined, to determine the degree of variation along the elevation gradient, to test for differences between zones and associations with elevation, humidity and soil nutrients, and to assess contribution of the intra- and interspecific variation to the community response to elevation and soil nutrients. The studied fern community showed strong species turnover along the elevation gradient, with some influence of soil nutrient concentration, supporting environmental determinism. All measured characters displayed variation along the gradient. Stomatal characters (size and density) had significantly less variation than morphometric characters (trunk diameter, stipe length and blade length), but stomatal density also shows interesting intraspecific patterns. In general, patterns within the fern community suggest a strong influence of species identity, especially of species inhabiting the lower edge of the cloud forest, which showed the clearest morphometric and stomatal patterns, associated to contrasting environments rather than to changes in elevation. The coincidence between morphometric and stomatal patterns in this area suggest hydraulic adjustments in response to contrasting environments. Our results provide evidence that tree ferns species respond to environmental changes through adjustments of morphometric plasticity and stomatal density, which is relevant to predict possible responses to variation in environmental conditions resulting from climate change.

9.
Integr Comp Biol ; 63(6): 1364-1375, 2023 Dec 29.
Artículo en Inglés | MEDLINE | ID: mdl-37550219

RESUMEN

Trees and other woody plants are immensely ecologically important, making it essential to understand the causes of relationships between tree structure and function. To help these efforts, we highlight persistent traditions in plant biology of appealing to environmental factors "limiting" or "controlling" woody plant features. Examples include the idea that inevitable drops in cell turgor with plant height limit cell expansion and thus leaf size and tree height; that low temperatures prohibit lignification of cells and thus the growth of woody plants at high elevation; and notions from dendrochronology and related fields that climate factors such as rainfall and temperature "control" growth ring features. We show that notions of "control," "limitation," and the like imply that selection would favor a given trait value, but that these would-be favored values are developmentally impossible to produce. Such "limitation" scenarios predict trait frequency distributions that are very narrow and are abruptly curtailed at the upper limit of developmental possibility (the right-hand side of the distribution). Such distributions have, to our knowledge, never been observed, so we see little empirical support for "limitation" hypotheses. We suggest that, as a more productive starting point, plant biologists should examine adaptation hypotheses, in which developmental possibility is wide (congruent with the wide ranges of trait variation that really are observed), but only some of the possible variants are favored. We suggest that (1) the traditional the proximate/ultimate causation distinction, (2) purging scenarios of teleology/anthropomorphism, and (3) stating hypotheses in terms of developmental potential and natural selection are three simple ways of making "limitation" hypotheses clearer with regard to biological process and thus empirically testable.


Asunto(s)
Hojas de la Planta , Xilema , Animales , Temperatura , Plantas , Biología
10.
Trends Plant Sci ; 28(11): 1257-1276, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37423784

RESUMEN

Evo-devo is often thought of as being the study of which genes underlie which phenotypes. However, evo-devo is much more than this, especially in plant science. In leaf scars along stems, cell changes across wood growth rings, or flowers along inflorescences, plants trace a record of their own development. Plant morpho evo-devo provides data that genes could never furnish on themes such as heterochrony, the evolution of temporal phenotypes, modularity, and phenotype-first evolution. As plant science surges into increasingly -omic realms, it is essential to keep plant morpho evo-devo in full view as an honored member of the evo-devo canon, ensuring that plant scientists can, wherever they are, generate fundamental insights at the appropriate level of biological organization.

11.
New Phytol ; 239(5): 1665-1678, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37381089

RESUMEN

Nutrient allocation is central to understanding plant ecological strategies and forest roles in biogeochemical cycles. Thought to be mainly driven by environmental conditions, nutrient allocation to woody organs, especially to living tissues, is poorly understood. To examine the role of differences in living tissues (sapwood, SW, vs inner bark, IB), organs, ecological strategies, and environmental conditions in driving nutrient allocation and scaling in woody plants, we quantified nitrogen and phosphorus in main stems and coarse roots of 45 species from three tropical ecosystems with contrasting precipitation, fire regime, and soil nutrients. Nutrient concentration variation was mostly explained by differences between IB and SW, followed by differences between species and, in the case of phosphorus, soil nutrient availability. IB nutrient concentrations were four times those of SW, with root tissues having slightly higher concentrations than stem tissues. Scaling between IB and SW, and between stems and roots, was generally isometric. In cross-sections, IB contributed half of total nutrients in roots and a third in stems. Our results highlight the important role of IB and SW for nutrient storage, the coordination in nutrient allocation across tissues and organs, and the need to differentiate between IB and SW to understand plant nutrient allocation.


Asunto(s)
Ecosistema , Nitrógeno , Fósforo , Corteza de la Planta , Hojas de la Planta , Árboles , Suelo , Raíces de Plantas , Tallos de la Planta
12.
Small ; 19(42): e2303131, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37344349

RESUMEN

Fabrication of large-area ionic covalent organic framework membranes (iCOMs) remains a grand challenge. Herein, the authors report the liquid water and water vapor-assisted fabrication of large-area superprotonic conductive iCOMs. A mixed monomer solution containing 1,3,5-triformylphloroglucinol (TFP) in 1,4-dioxane and p-diaminobenzenesulfonic acid (DABA) in water is first polymerized to obtain a pristine membrane which subsequently underwent crystallization process in mixed vapors containing water vapor. During the polymerization stage, water played a role of a diluting agent, weakening the Coulombic repulsion between sulfonic acid groups. During the crystallization stage, water vapor played a role of a structure-directing agent to facilitate the formation of highly crystalline, large-area iCOMs. The resulting membranes achieved a proton conductivity value of 0.76 S cm-1 at 90 °C under 100% relative humidity, which is among the highest ever reported. Using liquid water and water vapor as versatile additives open a novel avenue to the fabrication of large-area membranes from covalent organic frameworks and other kinds of crystalline organic framework materials.

13.
Nat Commun ; 14(1): 3765, 2023 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-37353549

RESUMEN

Controlling the number of molecular switches and their relative positioning within porous materials is critical to their functionality and properties. The proximity of many molecular switches to one another can hinder or completely suppress their response. Herein, a synthetic strategy involving mixed linkers is used to control the distribution of spiropyran-functionalized linkers in a covalent organic framework (COF). The COF contains a spiropyran in each pore which exhibits excellent reversible photoswitching behavior to its merocyanine form in the solid state in response to UV/Vis light. The spiro-COF possesses an urchin-shaped morphology and exhibits a morphological transition to 2D nanosheets and vesicles in solution upon UV light irradiation. The merocyanine-equipped COFs are extremely stable and possess a more ordered structure with enhanced photoluminescence. This approach to modulating structural isomerization in the solid state is used to develop inkless printing media, while the photomediated polarity change is used for water harvesting applications.


Asunto(s)
Síndrome de Cockayne , Estructuras Metalorgánicas , Humanos , Nitrocompuestos , Porosidad
14.
Molecules ; 28(7)2023 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-37049979

RESUMEN

Temperature and viscosity are essential parameters in medicine, environmental science, smart materials, and biology. However, few fluorescent sensor publications mention the direct relationship between temperature and viscosity. Three anthracene carboxyimide-based fluorescent molecular rotors, 1DiAC∙Cl, 2DiAC∙Cl, and 9DiAC∙Cl, were designed and synthesized. Their photophysical properties were studied in various solvents, such as N, N-dimethylacetamide, N, N-dimethylformamide, 1-propanol, ethanol, dimethyl sulfoxide, methanol, and water. Solvent polarizability resulted in a solvatochromism effect for all three rotors and their absorption and emission spectra were analyzed via the Lippert-Mataga equation and multilinear analysis using Kamlet-Taft and Catalán parameters. The rotors exhibited red-shifted absorption and emission bands in solution on account of differences in their torsion angle. The three rotors demonstrated strong fluorescence in a high-viscosity environment due to restricted intramolecular rotation. Investigations carried out under varying ratios of water to glycerol were explored to probe the viscosity-based changes in their optical properties. A good linear correlation between the logarithms of fluorescence intensity and solution viscosity for two rotors, namely 2DiAC∙Cl and 9DiAC∙Cl, was observed as the percentage of glycerol increased. Excellent exponential regression between the viscosity-related temperature and emission intensity was observed for all three investigated rotors.

15.
Chemistry ; 29(34): e202300624, 2023 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-36867728

RESUMEN

Polycyclic aromatic endoperoxides are important sources of singlet oxygen (1 O2 ) and their formation from polyacenes is well established. Anthracene carboxyimides are of particular interest as they exhibit excellent antitumor activity and possess unique photochemical properties. However, the photooxygenation of the synthetically versatile anthracene carboxyimide moiety has not been reported due to its competing [4+4] photodimerization reaction. Herein, we describe the reversible photo-oxidation of an anthracene carboxyimide. X-ray crystallographic analysis surprisingly revealed the formation of a racemic mixture of chiral hydroperoxides, rather than the expected endoperoxide. The photoproduct undergoes both photo- and thermolysis to form 1 O2 . Activation parameters were derived for the thermolysis and the mechanisms of photooxygenation and thermolysis are discussed. The anthracene carboxyimide also showed high selectivity and sensitivity for nitrite anions in acidic aqueous media and possessed stimuli-responsive behaviour.

16.
Clin Med Insights Cardiol ; 16: 11795468221141302, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36505229

RESUMEN

The clinical features of severe hypothyroidism vary in presentation, ranging from subclinical symptoms to multiorgan failure referred to as myxedema coma. The cornerstone treatments of myxedema coma include aggressive thyroid hormone replacement combined with excellent supportive care in the intensive care unit. We report a rare case of a 56-year-old female with history of hypothyroidism treated with levothyroxine, who developed myxedema coma post-pericardial window surgery for a large pericardial effusion. She was supported with substantial doses of vasopressors and inotropes for shock. In addition, she was initiated on lung-protection ventilation for acute respiratory distress syndrome. After the diagnosis of myxedema coma was made, she was started on intravenous levothyroxine and hydrocortisone with great sustained clinical response. This case illustrated myxedema coma as an unusual cause of shock in post-operative patients with past medical history of hypothyroidism.

17.
Parasit Vectors ; 15(1): 407, 2022 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-36329477

RESUMEN

BACKGROUND: The canine heartworm Dirofilaria immitis, a filarioid nematode of dogs and other carnivores, is widespread in the USA and the world. Over 20 different mosquito species serve as intermediate hosts of D. immitis, but their contribution to transmission varies according to factors like host feeding patterns, geographic locations and climatic conditions. The yellow fever mosquito, Aedes aegypti, is a competent vector of D. immitis but is often dismissed as a vector of veterinary relevance given its anthropophilic feeding behavior. We evaluated the prevalence of D. immitis in pet dogs along the USA-Mexico border and assessed whether Ae. aegypti in the area are naturally infected with heartworm and are potentially acting as a vector. METHODS: A total of 200 whole blood samples collected from pet dogs in the Lower Rio Grande Valley in south Texas from 2016 to 2019 were included in this study. Canine serum samples for D. immitis were tested using the DiroCHEK® Canine Heartworm Antigen Test Kit pre- and post-immune complex dissociations (ICD) and blood samples were tested using high-resolution melt (HRM) quantitative PCR (qPCR) and a probe-based qPCR. Additionally, mosquito specimens were collected and identified, and Ae. aegypti heads, abdomens and pools were tested using conventional PCR (cPCR) and HRM qPCR. RESULTS: Overall, heartworm prevalence in dogs aged > 6 months was 40.8% (64/157) when the results from all testing modalities were considered. Heartworm antigen was detected in 33.5% and 40.7% of the dogs using DiroCHEK® pre- and post-ICD, respectively. By molecular screening, 20.1% of dogs tested positive with probe-based qPCR, while only one tested positive with HRM qPCR. Of the Ae. aegypti abdomens from blood-fed Ae. aeygpti tested, 20 (21.7%) from mosquitoes that fed on dogs and four (7%) from those that fed on humans tested positive for heartworm. Among Ae. aegypti heads from blood-fed Ae. aeygpti, two (1.1%) were positive based on cPCR and four (2.5%) were positive based on HRM qPCR. No D. immitis DNA was detected in the 208 pools of whole bodies (358 individuals) of Ae. aegypti gravid females. CONCLUSIONS: Our study highlights a high prevalence of heartworm in dogs in south Texas and provides evidence that Ae. aegypti could be contributing to heartworm transmission in canine populations in this region.


Asunto(s)
Aedes , Dirofilaria immitis , Dirofilariasis , Enfermedades de los Perros , Humanos , Femenino , Perros , Animales , Dirofilaria immitis/genética , Dirofilariasis/epidemiología , Prevalencia , Texas/epidemiología , Mosquitos Vectores , Enfermedades de los Perros/epidemiología
18.
Chem Commun (Camb) ; 58(97): 13463-13466, 2022 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-36398625

RESUMEN

The uptake of atmospheric moisture by hygroscopic materials can have marked effects on a material's physical and chemical properties. This is true of materials that go on to incorporate waters of hydration in their molecular structural lattice, forming stable hydrates with fluctuations in relative humidity (RH). Nevertheless, RH remains relatively uncontrolled for a variable that can fluctuate widely depending on geographical climate, weather fluctuations, and building HVAC system stability. Herein, we report a processable 1,8-napthalimide-based fluorophore-spacer-receptor system that unexpectedly exhibited reversible three-state fluorescence hydrochromism with changes in RH due to RH-induced solid state molecular rearrangement. Care should be taken to evaluate the impact of variations in RH when characterising the solid state emission properties of charged fluorescent materials.


Asunto(s)
Geografía
20.
Antioxidants (Basel) ; 11(8)2022 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-35892637

RESUMEN

The imbalance between reactive oxygen species (ROS) production and antioxidant defense systems leads to macromolecule and tissue damage as a result of cellular oxidative stress. This phenomenon is considered a key factor in fatigue and muscle damage following chronic or high-intensity physical exercise. In the present study, the antioxidant effect of Moringa oleifera leaf extract (MOLE) was evaluated in C2C12 myotubes exposed to an elevated hydrogen peroxide (H2O2) insult. The capacity of the extract to influence the myotube redox status was evaluated through an analysis of the total antioxidant capacity (TAC), glutathione homeostasis (GSH and GSSG), total free thiols (TFT), and thioredoxin (Trx) activity, as well as the enzyme activities of superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) and transferase (GST). Moreover, the ability of MOLE to mitigate the stress-induced peroxidation of lipids and oxidative damage (TBARS and protein carbonyls) was also evaluated. Our data demonstrate that MOLE pre-treatment mitigates the highly stressful effects of H2O2 in myotubes (1 mM) by restoring the redox status (TFT, Trx, and GSH/GSSG ratio) and increasing the antioxidant enzymatic system (CAT, SOD, GPx, GST), thereby significantly reducing the TBARs and PrCAR levels. Our study provides evidence that MOLE supplementation has antioxidant potential, allowing myotubes better able to cope with an oxidative insult and, therefore, could represent a useful nutritional strategy for the preservation of muscle well-being.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...