Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Biotechnol ; 2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38671154

RESUMEN

Tandem repeats (TRs) are highly polymorphic in the human genome, have thousands of associated molecular traits and are linked to over 60 disease phenotypes. However, they are often excluded from at-scale studies because of challenges with variant calling and representation, as well as a lack of a genome-wide standard. Here, to promote the development of TR methods, we created a catalog of TR regions and explored TR properties across 86 haplotype-resolved long-read human assemblies. We curated variants from the Genome in a Bottle (GIAB) HG002 individual to create a TR dataset to benchmark existing and future TR analysis methods. We also present an improved variant comparison method that handles variants greater than 4 bp in length and varying allelic representation. The 8.1% of the genome covered by the TR catalog holds ~24.9% of variants per individual, including 124,728 small and 17,988 large variants for the GIAB HG002 'truth-set' TR benchmark. We demonstrate the utility of this pipeline across short-read and long-read technologies.

2.
medRxiv ; 2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38496498

RESUMEN

Less than half of individuals with a suspected Mendelian condition receive a precise molecular diagnosis after comprehensive clinical genetic testing. Improvements in data quality and costs have heightened interest in using long-read sequencing (LRS) to streamline clinical genomic testing, but the absence of control datasets for variant filtering and prioritization has made tertiary analysis of LRS data challenging. To address this, the 1000 Genomes Project ONT Sequencing Consortium aims to generate LRS data from at least 800 of the 1000 Genomes Project samples. Our goal is to use LRS to identify a broader spectrum of variation so we may improve our understanding of normal patterns of human variation. Here, we present data from analysis of the first 100 samples, representing all 5 superpopulations and 19 subpopulations. These samples, sequenced to an average depth of coverage of 37x and sequence read N50 of 54 kbp, have high concordance with previous studies for identifying single nucleotide and indel variants outside of homopolymer regions. Using multiple structural variant (SV) callers, we identify an average of 24,543 high-confidence SVs per genome, including shared and private SVs likely to disrupt gene function as well as pathogenic expansions within disease-associated repeats that were not detected using short reads. Evaluation of methylation signatures revealed expected patterns at known imprinted loci, samples with skewed X-inactivation patterns, and novel differentially methylated regions. All raw sequencing data, processed data, and summary statistics are publicly available, providing a valuable resource for the clinical genetics community to discover pathogenic SVs.

3.
Front Genet ; 15: 1367531, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38333623
4.
bioRxiv ; 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37961319

RESUMEN

Tandem repeats (TRs) are highly polymorphic in the human genome, have thousands of associated molecular traits, and are linked to over 60 disease phenotypes. However, their complexity often excludes them from at-scale studies due to challenges with variant calling, representation, and lack of a genome-wide standard. To promote TR methods development, we create a comprehensive catalog of TR regions and explore its properties across 86 samples. We then curate variants from the GIAB HG002 individual to create a tandem repeat benchmark. We also present a variant comparison method that handles small and large alleles and varying allelic representation. The 8.1% of the genome covered by the TR catalog holds ∼24.9% of variants per individual, including 124,728 small and 17,988 large variants for the GIAB HG002 TR benchmark. We work with the GIAB community to demonstrate the utility of this benchmark across short and long read technologies.

5.
Biologicals ; 82: 101680, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37178559

RESUMEN

In response to the COVID-19 pandemic, the National Institute of Standards and Technology released a synthetic RNA material for SARS-CoV-2 in June 2020. The goal was to rapidly produce a material to support molecular diagnostic testing applications. This material, referred to as Research Grade Test Material 10169, was shipped free of charge to laboratories across the globe to provide a non-hazardous material for assay development and assay calibration. The material consisted of two unique regions of the SARS-CoV-2 genome approximately 4 kb nucleotides in length. The concentration of each synthetic fragment was measured using RT-dPCR methods and confirmed to be compatible with RT-qPCR methods. In this report, the preparation, stability, and limitations of this material are described.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , COVID-19/diagnóstico , Pandemias , Técnicas de Diagnóstico Molecular/métodos , ARN Viral/genética , Sensibilidad y Especificidad , Prueba de COVID-19
6.
Nat Rev Genet ; 24(7): 464-483, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37059810

RESUMEN

Genetic variant calling from DNA sequencing has enabled understanding of germline variation in hundreds of thousands of humans. Sequencing technologies and variant-calling methods have advanced rapidly, routinely providing reliable variant calls in most of the human genome. We describe how advances in long reads, deep learning, de novo assembly and pangenomes have expanded access to variant calls in increasingly challenging, repetitive genomic regions, including medically relevant regions, and how new benchmark sets and benchmarking methods illuminate their strengths and limitations. Finally, we explore the possible future of more complete characterization of human genome variation in light of the recent completion of a telomere-to-telomere human genome reference assembly and human pangenomes, and we consider the innovations needed to benchmark their newly accessible repetitive regions and complex variants.


Asunto(s)
Benchmarking , Genoma Humano , Humanos , Genómica , Análisis de Secuencia de ADN , Secuenciación de Nucleótidos de Alto Rendimiento
7.
PLoS One ; 18(3): e0283548, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36989327

RESUMEN

As synthetic biology expands and accelerates into real-world applications, methods for quantitatively and precisely engineering biological function become increasingly relevant. This is particularly true for applications that require programmed sensing to dynamically regulate gene expression in response to stimuli. However, few methods have been described that can engineer biological sensing with any level of quantitative precision. Here, we present two complementary methods for precision engineering of genetic sensors: in silico selection and machine-learning-enabled forward engineering. Both methods use a large-scale genotype-phenotype dataset to identify DNA sequences that encode sensors with quantitatively specified dose response. First, we show that in silico selection can be used to engineer sensors with a wide range of dose-response curves. To demonstrate in silico selection for precise, multi-objective engineering, we simultaneously tune a genetic sensor's sensitivity (EC50) and saturating output to meet quantitative specifications. In addition, we engineer sensors with inverted dose-response and specified EC50. Second, we demonstrate a machine-learning-enabled approach to predictively engineer genetic sensors with mutation combinations that are not present in the large-scale dataset. We show that the interpretable machine learning results can be combined with a biophysical model to engineer sensors with improved inverted dose-response curves.


Asunto(s)
Aprendizaje Automático , Biología Sintética , Biología Sintética/métodos
8.
Cell Genom ; 2(5)2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-36452119

RESUMEN

Genome in a Bottle benchmarks are widely used to help validate clinical sequencing pipelines and develop variant calling and sequencing methods. Here we use accurate linked and long reads to expand benchmarks in 7 samples to include difficult-to-map regions and segmental duplications that are challenging for short reads. These benchmarks add more than 300,000 SNVs and 50,000 insertions or deletions (indels) and include 16% more exonic variants, many in challenging, clinically relevant genes not covered previously, such as PMS2. For HG002, we include 92% of the autosomal GRCh38 assembly while excluding regions problematic for benchmarking small variants, such as copy number variants, that should not have been in the previous version, which included 85% of GRCh38. It identifies eight times more false negatives in a short read variant call set relative to our previous benchmark. We demonstrate that this benchmark reliably identifies false positives and false negatives across technologies, enabling ongoing methods development.

9.
Nature ; 611(7936): 519-531, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36261518

RESUMEN

The current human reference genome, GRCh38, represents over 20 years of effort to generate a high-quality assembly, which has benefitted society1,2. However, it still has many gaps and errors, and does not represent a biological genome as it is a blend of multiple individuals3,4. Recently, a high-quality telomere-to-telomere reference, CHM13, was generated with the latest long-read technologies, but it was derived from a hydatidiform mole cell line with a nearly homozygous genome5. To address these limitations, the Human Pangenome Reference Consortium formed with the goal of creating high-quality, cost-effective, diploid genome assemblies for a pangenome reference that represents human genetic diversity6. Here, in our first scientific report, we determined which combination of current genome sequencing and assembly approaches yield the most complete and accurate diploid genome assembly with minimal manual curation. Approaches that used highly accurate long reads and parent-child data with graph-based haplotype phasing during assembly outperformed those that did not. Developing a combination of the top-performing methods, we generated our first high-quality diploid reference assembly, containing only approximately four gaps per chromosome on average, with most chromosomes within ±1% of the length of CHM13. Nearly 48% of protein-coding genes have non-synonymous amino acid changes between haplotypes, and centromeric regions showed the highest diversity. Our findings serve as a foundation for assembling near-complete diploid human genomes at scale for a pangenome reference to capture global genetic variation from single nucleotides to structural rearrangements.


Asunto(s)
Mapeo Cromosómico , Diploidia , Genoma Humano , Genómica , Humanos , Mapeo Cromosómico/normas , Genoma Humano/genética , Haplotipos/genética , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Secuenciación de Nucleótidos de Alto Rendimiento/normas , Análisis de Secuencia de ADN/métodos , Análisis de Secuencia de ADN/normas , Estándares de Referencia , Genómica/métodos , Genómica/normas , Cromosomas Humanos/genética , Variación Genética/genética
10.
Cell Genom ; 2(5)2022 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-35720974

RESUMEN

The precisionFDA Truth Challenge V2 aimed to assess the state of the art of variant calling in challenging genomic regions. Starting with FASTQs, 20 challenge participants applied their variant-calling pipelines and submitted 64 variant call sets for one or more sequencing technologies (Illumina, PacBio HiFi, and Oxford Nanopore Technologies). Submissions were evaluated following best practices for benchmarking small variants with updated Genome in a Bottle benchmark sets and genome stratifications. Challenge submissions included numerous innovative methods, with graph-based and machine learning methods scoring best for short-read and long-read datasets, respectively. With machine learning approaches, combining multiple sequencing technologies performed particularly well. Recent developments in sequencing and variant calling have enabled benchmarking variants in challenging genomic regions, paving the way for the identification of previously unknown clinically relevant variants.

11.
Science ; 376(6588): eabl3533, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35357935

RESUMEN

Compared to its predecessors, the Telomere-to-Telomere CHM13 genome adds nearly 200 million base pairs of sequence, corrects thousands of structural errors, and unlocks the most complex regions of the human genome for clinical and functional study. We show how this reference universally improves read mapping and variant calling for 3202 and 17 globally diverse samples sequenced with short and long reads, respectively. We identify hundreds of thousands of variants per sample in previously unresolved regions, showcasing the promise of the T2T-CHM13 reference for evolutionary and biomedical discovery. Simultaneously, this reference eliminates tens of thousands of spurious variants per sample, including reduction of false positives in 269 medically relevant genes by up to a factor of 12. Because of these improvements in variant discovery coupled with population and functional genomic resources, T2T-CHM13 is positioned to replace GRCh38 as the prevailing reference for human genetics.


Asunto(s)
Variación Genética , Genoma Humano , Genómica/normas , Análisis de Secuencia de ADN/normas , Humanos , Estándares de Referencia
12.
Nat Biotechnol ; 40(5): 672-680, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35132260

RESUMEN

The repetitive nature and complexity of some medically relevant genes poses a challenge for their accurate analysis in a clinical setting. The Genome in a Bottle Consortium has provided variant benchmark sets, but these exclude nearly 400 medically relevant genes due to their repetitiveness or polymorphic complexity. Here, we characterize 273 of these 395 challenging autosomal genes using a haplotype-resolved whole-genome assembly. This curated benchmark reports over 17,000 single-nucleotide variations, 3,600 insertions and deletions and 200 structural variations each for human genome reference GRCh37 and GRCh38 across HG002. We show that false duplications in either GRCh37 or GRCh38 result in reference-specific, missed variants for short- and long-read technologies in medically relevant genes, including CBS, CRYAA and KCNE1. When masking these false duplications, variant recall can improve from 8% to 100%. Forming benchmarks from a haplotype-resolved whole-genome assembly may become a prototype for future benchmarks covering the whole genome.


Asunto(s)
Genoma Humano , Genoma Humano/genética , Haplotipos/genética , Humanos , Análisis de Secuencia de ADN
14.
Mol Syst Biol ; 17(3): e10179, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33784029

RESUMEN

Allostery is a fundamental biophysical mechanism that underlies cellular sensing, signaling, and metabolism. Yet a quantitative understanding of allosteric genotype-phenotype relationships remains elusive. Here, we report the large-scale measurement of the genotype-phenotype landscape for an allosteric protein: the lac repressor from Escherichia coli, LacI. Using a method that combines long-read and short-read DNA sequencing, we quantitatively measure the dose-response curves for nearly 105 variants of the LacI genetic sensor. The resulting data provide a quantitative map of the effect of amino acid substitutions on LacI allostery and reveal systematic sequence-structure-function relationships. We find that in many cases, allosteric phenotypes can be quantitatively predicted with additive or neural-network models, but unpredictable changes also occur. For example, we were surprised to discover a new band-stop phenotype that challenges conventional models of allostery and that emerges from combinations of nearly silent amino acid substitutions.


Asunto(s)
Genotipo , Represoras Lac/metabolismo , Fenotipo , Regulación Alostérica , Sustitución de Aminoácidos , Escherichia coli/genética , Variación Genética
16.
Genome Biol ; 21(1): 129, 2020 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-32487205

RESUMEN

BACKGROUND: Thousands of experiments and studies use the human reference genome as a resource each year. This single reference genome, GRCh38, is a mosaic created from a small number of individuals, representing a very small sample of the human population. There is a need for reference genomes from multiple human populations to avoid potential biases. RESULTS: Here, we describe the assembly and annotation of the genome of an Ashkenazi individual and the creation of a new, population-specific human reference genome. This genome is more contiguous and more complete than GRCh38, the latest version of the human reference genome, and is annotated with highly similar gene content. The Ashkenazi reference genome, Ash1, contains 2,973,118,650 nucleotides as compared to 2,937,639,212 in GRCh38. Annotation identified 20,157 protein-coding genes, of which 19,563 are > 99% identical to their counterparts on GRCh38. Most of the remaining genes have small differences. Forty of the protein-coding genes in GRCh38 are missing from Ash1; however, all of these genes are members of multi-gene families for which Ash1 contains other copies. Eleven genes appear on different chromosomes from their homologs in GRCh38. Alignment of DNA sequences from an unrelated Ashkenazi individual to Ash1 identified ~ 1 million fewer homozygous SNPs than alignment of those same sequences to the more-distant GRCh38 genome, illustrating one of the benefits of population-specific reference genomes. CONCLUSIONS: The Ash1 genome is presented as a reference for any genetic studies involving Ashkenazi Jewish individuals.


Asunto(s)
Genoma Humano , Humanos , Anotación de Secuencia Molecular , Valores de Referencia , Translocación Genética
17.
Nat Biotechnol ; 38(11): 1347-1355, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32541955

RESUMEN

New technologies and analysis methods are enabling genomic structural variants (SVs) to be detected with ever-increasing accuracy, resolution and comprehensiveness. To help translate these methods to routine research and clinical practice, we developed a sequence-resolved benchmark set for identification of both false-negative and false-positive germline large insertions and deletions. To create this benchmark for a broadly consented son in a Personal Genome Project trio with broadly available cells and DNA, the Genome in a Bottle Consortium integrated 19 sequence-resolved variant calling methods from diverse technologies. The final benchmark set contains 12,745 isolated, sequence-resolved insertion (7,281) and deletion (5,464) calls ≥50 base pairs (bp). The Tier 1 benchmark regions, for which any extra calls are putative false positives, cover 2.51 Gbp and 5,262 insertions and 4,095 deletions supported by ≥1 diploid assembly. We demonstrate that the benchmark set reliably identifies false negatives and false positives in high-quality SV callsets from short-, linked- and long-read sequencing and optical mapping.


Asunto(s)
Mutación de Línea Germinal/genética , Mutación INDEL/genética , Diploidia , Variación Estructural del Genoma , Humanos , Anotación de Secuencia Molecular , Análisis de Secuencia de ADN
18.
Microbiome ; 8(1): 35, 2020 03 13.
Artículo en Inglés | MEDLINE | ID: mdl-32169095

RESUMEN

BACKGROUND: There are a variety of bioinformatic pipelines and downstream analysis methods for analyzing 16S rRNA marker-gene surveys. However, appropriate assessment datasets and metrics are needed as there is limited guidance to decide between available analysis methods. Mixtures of environmental samples are useful for assessing analysis methods as one can evaluate methods based on calculated expected values using unmixed sample measurements and the mixture design. Previous studies have used mixtures of environmental samples to assess other sequencing methods such as RNAseq. But no studies have used mixtures of environmental to assess 16S rRNA sequencing. RESULTS: We developed a framework for assessing 16S rRNA sequencing analysis methods which utilizes a novel two-sample titration mixture dataset and metrics to evaluate qualitative and quantitative characteristics of count tables. Our qualitative assessment evaluates feature presence/absence exploiting features only present in unmixed samples or titrations by testing if random sampling can account for their observed relative abundance. Our quantitative assessment evaluates feature relative and differential abundance by comparing observed and expected values. We demonstrated the framework by evaluating count tables generated with three commonly used bioinformatic pipelines: (i) DADA2 a sequence inference method, (ii) Mothur a de novo clustering method, and (iii) QIIME an open-reference clustering method. The qualitative assessment results indicated that the majority of Mothur and QIIME features only present in unmixed samples or titrations were accounted for by random sampling alone, but this was not the case for DADA2 features. Combined with count table sparsity (proportion of zero-valued cells in a count table), these results indicate DADA2 has a higher false-negative rate whereas Mothur and QIIME have higher false-positive rates. The quantitative assessment results indicated the observed relative abundance and differential abundance values were consistent with expected values for all three pipelines. CONCLUSIONS: We developed a novel framework for assessing 16S rRNA marker-gene survey methods and demonstrated the framework by evaluating count tables generated with three bioinformatic pipelines. This framework is a valuable community resource for assessing 16S rRNA marker-gene survey bioinformatic methods and will help scientists identify appropriate analysis methods for their marker-gene surveys.


Asunto(s)
Biología Computacional/métodos , Análisis de Datos , Microbiota/genética , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN/métodos , Adulto , Ensayos Clínicos como Asunto , Femenino , Marcadores Genéticos , Humanos , Masculino , Programas Informáticos , Adulto Joven
19.
Nat Biotechnol ; 37(10): 1155-1162, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31406327

RESUMEN

The DNA sequencing technologies in use today produce either highly accurate short reads or less-accurate long reads. We report the optimization of circular consensus sequencing (CCS) to improve the accuracy of single-molecule real-time (SMRT) sequencing (PacBio) and generate highly accurate (99.8%) long high-fidelity (HiFi) reads with an average length of 13.5 kilobases (kb). We applied our approach to sequence the well-characterized human HG002/NA24385 genome and obtained precision and recall rates of at least 99.91% for single-nucleotide variants (SNVs), 95.98% for insertions and deletions <50 bp (indels) and 95.99% for structural variants. Our CCS method matches or exceeds the ability of short-read sequencing to detect small variants and structural variants. We estimate that 2,434 discordances are correctable mistakes in the 'genome in a bottle' (GIAB) benchmark set. Nearly all (99.64%) variants can be phased into haplotypes, further improving variant detection. De novo genome assembly using CCS reads alone produced a contiguous and accurate genome with a contig N50 of >15 megabases (Mb) and concordance of 99.997%, substantially outperforming assembly with less-accurate long reads.


Asunto(s)
ADN Circular/genética , Genoma Humano , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Análisis de Secuencia de ADN/métodos , Secuencia de Bases , Variación Genética , Haplotipos , Humanos
20.
Sci Data ; 6(1): 91, 2019 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-31201313

RESUMEN

Single-molecule long-read sequencing datasets were generated for a son-father-mother trio of Han Chinese descent that is part of the Genome in a Bottle (GIAB) consortium portfolio. The dataset was generated using the Pacific Biosciences Sequel System. The son and each parent were sequenced to an average coverage of 60 and 30, respectively, with N50 subread lengths between 16 and 18 kb. Raw reads and reads aligned to both the GRCh37 and GRCh38 are available at the NCBI GIAB ftp site (ftp://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/data/ChineseTrio/). The GRCh38 aligned read data are archived in NCBI SRA (SRX4739017, SRX4739121, and SRX4739122). This dataset is available for anyone to develop and evaluate long-read bioinformatics methods.


Asunto(s)
Pueblo Asiatico/genética , Bases de Datos Genéticas , Genoma Humano , Núcleo Familiar , China , Femenino , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Masculino , Análisis de Secuencia de ADN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...