Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Int J Parasitol ; 49(3-4): 211-223, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30677390

RESUMEN

Tapeworms (cestodes) of the genus Hymenolepis are the causative agents of hymenolepiasis, a neglected zoonotic disease. Hymenolepis nana is the most prevalent human tapeworm, especially affecting children. The genomes of Hymenolepis microstoma and H. nana have been recently sequenced and assembled. MicroRNAs (miRNAs), a class of small non-coding RNAs, are principle regulators of gene expression at the post-transcriptional level and are involved in many different biological processes. In previous work, we experimentally identified miRNA genes in the cestodes Echinococcus, Taenia and Mesocestoides. However, current knowledge about miRNAs in Hymenolepis is limited. In this work we described for the first known time the expression profile of the miRNA complement in H. microstoma, and discovered miRNAs in H. nana. We found a reduced complement of 37 evolutionarily conserved miRNAs, putatively reflecting their low morphological complexity and parasitic lifestyle. We found high expression of a few miRNAs in the larval stage of H. microstoma that are conserved in other cestodes, suggesting that these miRNAs may have important roles in development, survival and for host-parasite interplay. We performed a comparative analysis of the identified miRNAs across the Cestoda and showed that most of the miRNAs in Hymenolepis are located in intergenic regions, implying that they are independently transcribed. We found a Hymenolepis-specific cluster composed of three members of the mir-36 family. Also, we found that one of the neighboring genes of mir-10 was a Hox gene as in most bilaterial species. This study provides a valuable resource for further experimental research in cestode biology that might lead to improved detection and control of these neglected parasites. The comprehensive identification and expression analysis of Hymenolepis miRNAs can help to identify novel biomarkers for diagnosis and/or novel therapeutic targets for the control of hymenolepiasis.


Asunto(s)
Perfilación de la Expresión Génica , Hymenolepis/genética , MicroARNs/análisis , MicroARNs/genética , Análisis de Secuencia de ARN , Animales
2.
BMC Biol ; 14: 10, 2016 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-26941070

RESUMEN

BACKGROUND: Early developmental patterns of flatworms are extremely diverse and difficult to compare between distant groups. In parasitic flatworms, such as tapeworms, this is confounded by highly derived life cycles involving indirect development, and even the true orientation of the tapeworm antero-posterior (AP) axis has been a matter of controversy. In planarians, and metazoans generally, the AP axis is specified by the canonical Wnt pathway, and we hypothesized that it could also underpin axial formation during larval metamorphosis in tapeworms. RESULTS: By comparative gene expression analysis of Wnt components and conserved AP markers in the tapeworms Echinococcus multilocularis and Hymenolepis microstoma, we found remarkable similarities between the early stages of larval metamorphosis in tapeworms and late embryonic and adult development in planarians. We demonstrate posterior expression of specific Wnt factors during larval metamorphosis and show that scolex formation is preceded by localized expression of Wnt inhibitors. In the highly derived larval form of E. multilocularis, which proliferates asexually within the mammalian host, we found ubiquitous expression of posterior Wnt factors combined with localized expression of Wnt inhibitors that correlates with the asexual budding of scoleces. As in planarians, muscle cells are shown to be a source of secreted Wnt ligands, providing an explanation for the retention of a muscle layer in the immotile E. multilocularis larva. CONCLUSIONS: The strong conservation of gene expression between larval metamorphosis in tapeworms and late embryonic development in planarians suggests, for the first time, a homologous developmental period across this diverse phylum. We postulate these to represent the phylotypic stages of these flatworm groups. Our results support the classical notion that the scolex is the true anterior end of tapeworms. Furthermore, the up-regulation of Wnt inhibitors during the specification of multiple anterior poles suggests a mechanism for the unique asexual reproduction of E. multilocularis larvae.


Asunto(s)
Echinococcus multilocularis/crecimiento & desarrollo , Regulación del Desarrollo de la Expresión Génica , Proteínas del Helminto/genética , Hymenolepis/crecimiento & desarrollo , Proteínas Wnt/genética , Animales , Echinococcus multilocularis/genética , Echinococcus multilocularis/ultraestructura , Hymenolepis/genética , Hymenolepis/ultraestructura , Metamorfosis Biológica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA