Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Tipo de estudio
Intervalo de año de publicación
1.
Endocr Res ; 45(1): 58-71, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31566019

RESUMEN

Background: Being born with low birth weight (LBW) is a risk factor for muscle insulin resistance and type 2 diabetes (T2D), which may be mediated by epigenetic mechanisms programmed by the intrauterine environment. Epigenetic mechanisms exert their prime effects in developing cells. We hypothesized that muscle insulin resistance in LBW subjects may be due to early differential epigenomic and transcriptomic alterations in their immature muscle progenitor cells.Results: Muscle progenitor cells were obtained from 23 healthy young adult men born at term with LBW, and 15 BMI-matched normal birth weight (NBW) controls. The cells were subsequently cultured and differentiated into myotubes. DNA and RNA were harvested before and after differentiation for genome-wide DNA methylation and RNA expression measurements.After correcting for multiple comparisons (q ≤ 0.05), 56 CpG sites were found to be significantly, differentially methylated in myoblasts from LBW compared with NBW men, of which the top five gene-annotated CpG sites (SKI, ARMCX3, NR5A2, NEUROG, ESRRG) previously have been associated to regulation of cholesterol, fatty acid and glucose metabolism and muscle development or hypertrophy. LBW men displayed markedly decreased myotube gene expression levels of the AMPK-repressing tyrosine kinase gene FYN and the histone deacetylase gene HDAC7. Silencing of FYN and HDAC7 was associated with impaired myotube formation, which for HDAC7 reduced muscle glucose uptake.Conclusions: The data provides evidence of impaired muscle development predisposing LBW individuals to T2D is linked to and potentially caused by distinct DNA methylation and transcriptional changes including down regulation of HDAC7 and FYN in their immature myoblast stem cells.


Asunto(s)
Regulación hacia Abajo/genética , Epigenoma/genética , Recién Nacido de Bajo Peso , Fibras Musculares Esqueléticas/metabolismo , Mioblastos/metabolismo , Transcriptoma/genética , Adulto , Humanos , Masculino , Adulto Joven
2.
JCI Insight ; 3(17)2018 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-30185669

RESUMEN

Offspring of women with gestational diabetes mellitus (GDM) are at increased risk of developing metabolic disease, potentially mediated by epigenetic mechanisms. We recruited 608 GDM and 626 control offspring from the Danish National Birth Cohort, aged between 9 and 16 years. DNA methylation profiles were measured in peripheral blood of 93 GDM offspring and 95 controls using the Illumina HumanMethylation450 BeadChip. Pyrosequencing was performed for validation/replication of putative GDM-associated, differentially methylated CpGs in additional 905 offspring (462 GDM, 444 control offspring). We identified 76 differentially methylated CpGs in GDM offspring compared with controls in the discovery cohort (FDR, P < 0.05). Adjusting for offspring BMI did not affect the association between methylation levels and GDM status for any of the 76 CpGs. Most of these epigenetic changes were due to confounding by maternal prepregnancy BMI; however, 13 methylation changes were independently associated with maternal GDM. Three prepregnancy BMI-associated CpGs (cg00992687 and cg09452568 of ESM1 and cg14328641 of MS4A3) were validated in the replication cohort, while cg09109411 (PDE6A) was found to be associated with GDM status. The identified methylation changes may reflect developmental programming of organ disease mechanisms and/or may serve as disease biomarkers.


Asunto(s)
Metilación de ADN/genética , Diabetes Gestacional/genética , Epigénesis Genética , Obesidad/genética , Adolescente , Adulto , Biomarcadores/sangre , Niño , Femenino , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Humanos , Masculino , Embarazo
3.
Epigenomics ; 8(12): 1601-1617, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27854126

RESUMEN

AIM: To define the genomic distribution and function of DNA methylation changes during human adipogenesis. METHODS: We isolated adipocyte-derived stem cells from 13 individuals and analyzed genome-wide DNA methylation and gene expression in cultured adipocyte-derived stem cells and mature adipocytes. RESULTS: We observed altered DNA methylation of 11,947 CpG sites and altered expression of 11,830 transcripts after differentiation. De novo methylation was observed across all genomic elements. Co-existence of genes with both altered expression and DNA methylation was found in genes important for cell cycle and adipokine signaling. CONCLUSION: Human adipogenesis is associated with significant DNA methylation changes across the entire genome and may impact regulation of cell cycle and adipokine signaling.


Asunto(s)
Adipogénesis/genética , Metilación de ADN , Expresión Génica , Adipocitos/citología , Adiponectina/genética , Adulto , Diferenciación Celular , Células Cultivadas , Islas de CpG , Genoma Humano , Humanos , Masculino , Regiones Promotoras Genéticas , Células Madre/metabolismo , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...