Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Phys Rev Lett ; 131(10): 100801, 2023 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-37739376

RESUMEN

We demonstrate quantum logic enhanced sensitivity for a macroscopic ensemble of solid-state, hybrid two-qubit sensors. We achieve over a factor of 30 improvement in the single-shot signal-to-noise ratio, translating to an ac magnetic field sensitivity enhancement exceeding an order of magnitude for time-averaged measurements. Using the electronic spins of nitrogen vacancy (NV) centers in diamond as sensors, we leverage the on-site nitrogen nuclear spins of the NV centers as memory qubits, in combination with homogeneous and stable bias and control fields, ensuring that all of the ∼10^{9} two-qubit sensors are sufficiently identical to permit global control of the NV ensemble spin states. We find quantum logic sensitivity enhancement for multiple measurement protocols with varying optimal sensing intervals, including XY8 and DROID-60 dynamical decoupling, as well as correlation spectroscopy, using an applied ac magnetic field signal. The results are independent of the nature of the target signal and broadly applicable to measurements using NV centers and other solid-state spin ensembles. This work provides a benchmark for macroscopic ensembles of quantum sensors that employ quantum logic or quantum error correction algorithms for enhanced sensitivity.

2.
Phys Rev Lett ; 117(10): 107202, 2016 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-27636490

RESUMEN

The coupling and possible nonequilibrium between magnons and other energy carriers have been used to explain several recently discovered thermally driven spin transport and energy conversion phenomena. Here, we report experiments in which local nonequilibrium between magnons and phonons in a single crystalline bulk magnetic insulator, Y_{3}Fe_{5}O_{12}, has been created optically within a focused laser spot and probed directly via micro-Brillouin light scattering. Through analyzing the deviation in the magnon number density from the local equilibrium value, we obtain the diffusion length of thermal magnons. By explicitly establishing and observing local nonequilibrium between magnons and phonons, our studies represent an important step toward a quantitative understanding of various spin-heat coupling phenomena.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA