Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 117
Filtrar
1.
Transfusion ; 2024 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-38644556

RESUMEN

BACKGROUND: Blood typing is essential for safe transfusions and is performed serologically or genetically. Genotyping predominantly focuses on coding regions, but non-coding variants may affect gene regulation, as demonstrated in the ABO, FY and XG systems. To uncover regulatory loci, we expanded a recently developed bioinformatics pipeline for discovery of non-coding variants by including additional epigenetic datasets. METHODS: Multiple datasets including ChIP-seq with erythroid transcription factors (TFs), histone modifications (H3K27ac, H3K4me1), and chromatin accessibility (ATAC-seq) were analyzed. Candidate regulatory regions were investigated for activity (luciferase assays) and TF binding (electrophoretic mobility shift assay, EMSA, and mass spectrometry, MS). RESULTS: In total, 814 potential regulatory sites in 47 blood-group-related genes were identified where one or more erythroid TFs bound. Enhancer candidates in CR1, EMP3, ABCB6, and ABCC4 indicated by ATAC-seq, histone markers, and co-occupancy of 4 TFs (GATA1/KLF1/RUNX1/NFE2) were investigated but only CR1 and ABCC4 showed increased transcription. Co-occupancy of GATA1 and KLF1 was observed in the KEL promoter, previously reported to contain GATA1 and Sp1 sites. TF binding energy scores decreased when three naturally occurring variants were introduced into GATA1 and KLF1 motifs. Two of three GATA1 sites and the KLF1 site were confirmed functionally. EMSA and MS demonstrated increased GATA1 and KLF1 binding to the wild-type compared to variant motifs. DISCUSSION: This combined bioinformatics and experimental approach revealed multiple candidate regulatory regions and predicted TF co-occupancy sites. The KEL promoter was characterized in detail, indicating that two adjacent GATA1 and KLF1 motifs are most crucial for transcription.

2.
Nat Microbiol ; 9(5): 1176-1188, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38684911

RESUMEN

Matching donor and recipient blood groups based on red blood cell (RBC) surface ABO glycans and antibodies in plasma is crucial to avoid potentially fatal reactions during transfusions. Enzymatic conversion of RBC glycans to the universal group O is an attractive solution to simplify blood logistics and prevent ABO-mismatched transfusions. The gut symbiont Akkermansia muciniphila can degrade mucin O-glycans including ABO epitopes. Here we biochemically evaluated 23 Akkermansia glycosyl hydrolases and identified exoglycosidase combinations which efficiently transformed both A and B antigens and four of their carbohydrate extensions. Enzymatic removal of canonical and extended ABO antigens on RBCs significantly improved compatibility with group O plasmas, compared to conversion of A or B antigens alone. Finally, structural analyses of two B-converting enzymes identified a previously unknown putative carbohydrate-binding module. This study demonstrates the potential utility of mucin-degrading gut bacteria as valuable sources of enzymes for production of universal blood for transfusions.


Asunto(s)
Sistema del Grupo Sanguíneo ABO , Akkermansia , Glicósido Hidrolasas , Sistema del Grupo Sanguíneo ABO/inmunología , Humanos , Glicósido Hidrolasas/metabolismo , Mucinas/metabolismo , Eritrocitos/inmunología , Polisacáridos/metabolismo , Microbioma Gastrointestinal , Antígenos de Grupos Sanguíneos/metabolismo , Antígenos de Grupos Sanguíneos/inmunología , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/inmunología
3.
PLoS Comput Biol ; 20(3): e1011977, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38512997

RESUMEN

A key element for successful blood transfusion is compatibility of the patient and donor red blood cell (RBC) antigens. Precise antigen matching reduces the risk for immunization and other adverse transfusion outcomes. RBC antigens are encoded by specific genes, which allows developing computational methods for determining antigens from genomic data. We describe here a classification method for determining RBC antigens from genotyping array data. Random forest models for 39 RBC antigens in 14 blood group systems and for human platelet antigen (HPA)-1 were trained and tested using genotype and RBC antigen and HPA-1 typing data available for 1,192 blood donors in the Finnish Blood Service Biobank. The algorithm and models were further evaluated using a validation cohort of 111,667 Danish blood donors. In the Finnish test data set, the median (interquartile range [IQR]) balanced accuracy for 39 models was 99.9 (98.9-100)%. We were able to replicate 34 out of 39 Finnish models in the Danish cohort and the median (IQR) balanced accuracy for classifications was 97.1 (90.1-99.4)%. When applying models trained with the Danish cohort, the median (IQR) balanced accuracy for the 40 Danish models in the Danish test data set was 99.3 (95.1-99.8)%. The RBC antigen and HPA-1 prediction models demonstrated high overall accuracies suitable for probabilistic determination of blood groups and HPA-1 at biobank-scale. Furthermore, population-specific training cohort increased the accuracies of the models. This stand-alone and freely available method is applicable for research and screening for antigen-negative blood donors.


Asunto(s)
Antígenos de Plaqueta Humana , Antígenos de Grupos Sanguíneos , Humanos , Antígenos de Grupos Sanguíneos/genética , Bancos de Muestras Biológicas , Tipificación y Pruebas Cruzadas Sanguíneas , Genotipo , Transfusión Sanguínea , Antígenos de Plaqueta Humana/genética
4.
Vox Sang ; 119(5): 496-504, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38326223

RESUMEN

BACKGROUND AND OBJECTIVES: Polymorphic molecules expressed on the surface of certain blood cells are traditionally categorized as blood groups and human platelet or neutrophil antigens. CD36 is widely considered a platelet antigen (Naka) and anti-CD36 can cause foetal/neonatal alloimmune thrombocytopenia (FNAIT) in CD36-negative pregnant women. CD36 is used as a marker of differentiation in early erythroid culture. During the experimental culture of CD34+ cells from random blood donors, we observed that one individual lacked CD36. We sought to investigate this observation further and determine if CD36 fulfils the International Society of Blood Transfusion criteria for becoming a blood group. MATERIALS AND METHODS: Surface markers were monitored by flow cytometry on developing cells during the erythroid culture of CD34+ cells. Genetic and flow cytometric analyses on peripheral blood cells were performed. Proteomic datasets were analysed, and clinical case reports involving anti-CD36 and foetal anaemia were scrutinized. RESULTS: Sequencing of CD36-cDNA identified homozygosity for c.1133G>T/p.Gly378Val in the CD36-negative donor. The minor allele frequency of rs146027667:T is 0.1% globally and results in abolished CD36 expression. CD36 has been considered absent from mature red blood cells (RBCs); however, we detected CD36 expression on RBCs and reticulocytes from 20 blood donors. By mining reticulocyte and RBC datasets, we found evidence for CD36-derived peptides enriched in the membrane fractions. Finally, our literature review revealed severe cases of foetal anaemia attributed to anti-CD36. CONCLUSIONS: Based on these findings, we conclude that CD36 fulfils the criteria for becoming a new blood group system and that anti-CD36 is implicated not only in FNAIT but also foetal anaemia.


Asunto(s)
Antígenos CD36 , Eritrocitos , Antígenos CD36/genética , Antígenos CD36/sangre , Humanos , Femenino , Eritrocitos/metabolismo , Embarazo , Antígenos de Grupos Sanguíneos/genética , Masculino , Recién Nacido , Trombocitopenia Neonatal Aloinmune/sangre , Trombocitopenia Neonatal Aloinmune/genética , Relevancia Clínica
6.
Transfusion ; 63(12): 2297-2310, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37921035

RESUMEN

BACKGROUND: Accurate blood type data are essential for blood bank management, but due to costs, few of 43 blood group systems are routinely determined in Danish blood banks. However, a more comprehensive dataset of blood types is useful in scenarios such as rare blood type allocation. We aimed to investigate the viability and accuracy of predicting blood types by leveraging an existing dataset of imputed genotypes for two cohorts of approximately 90,000 each (Danish Blood Donor Study and Copenhagen Biobank) and present a more comprehensive overview of blood types for our Danish donor cohort. STUDY DESIGN AND METHODS: Blood types were predicted from genome array data using known variant determinants. Prediction accuracy was confirmed by comparing with preexisting serological blood types. The Vel blood group was used to test the viability of using genetic prediction to narrow down the list of candidate donors with rare blood types. RESULTS: Predicted phenotypes showed a high balanced accuracy >99.5% in most cases: A, B, C/c, Coa /Cob , Doa /Dob , E/e, Jka /Jkb , Kna /Knb , Kpa /Kpb , M/N, S/s, Sda , Se, and Yta /Ytb , while some performed slightly worse: Fya /Fyb , K/k, Lua /Lub , and Vel ~99%-98% and CW and P1 ~96%. Genetic prediction identified 70 potential Vel negatives in our cohort, 64 of whom were confirmed correct using polymerase chain reaction (negative predictive value: 91.5%). DISCUSSION: High genetic prediction accuracy in most blood groups demonstrated the viability of generating blood types using preexisting genotype data at no cost and successfully narrowed the pool of potential individuals with the rare Vel-negative phenotype from 180,000 to 70.


Asunto(s)
Antígenos de Grupos Sanguíneos , Humanos , Antígenos de Grupos Sanguíneos/genética , Genotipo , Fenotipo , Donantes de Sangre , Reacción en Cadena de la Polimerasa
7.
Transfusion ; 63(10): 1951-1961, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37694916

RESUMEN

BACKGROUND: Correct ABO blood-group matching between donor and patient is crucial for safe transfusions. We investigated the underlying reason causing inconclusive ABO serology in samples referred to our laboratory. STUDY DESIGN AND METHODS: Flow cytometric analysis, ABO genotyping, and sequencing were used to characterize ABO-discrepant blood samples (n = 13). ABO gene variants were inserted in a GFP-containing bicistronic vector to assess A/B expression following overexpression in HeLa cells. RESULTS: Seven novel alleles with nonsense mutations predicted to truncate the encoded ABO glycosyltransferases were identified. While these variants could represent O alleles, serology showed signs of ABO glycosyltransferase activity. ABO*A1.01-related alleles displayed remarkably characteristic percentages of A-positive cells for samples with the same variant: c.42C>A (p.Cys14*; 10%), c.102C>A (p.Tyr34*; 31%-32%, n = 2), c.106dup (p.Val36Glyfs*21; 16%-17%, n = 3) or c.181_182ins (p.Leu61Argfs*21; 12%-13%, n = 2). Transfection studies confirmed significantly decreased A expression compared to wild type. The remaining variants were found on ABO*B.01 background: c.1_5dup (pGly3Trpfs*20), c.15dup (p.Arg6Alafs*51) or c.496del (p.Thr166Profs*26). Although the absence of plasma anti-B was noted overall, B antigen expression was barely detected on erythrocytes. Overexpression confirmed decreased B in two variants compared to wildtype while c.1_5dup only showed a non-significant downward trend. CONCLUSION: Samples displaying aberrant ABO serology revealed seven principally interesting alleles. Despite the presence of truncating mutations, normally resulting in null alleles, low levels of ABO antigens were detectable where alterations affected ABO exons 1-4 but not exon 7. This is compatible with the previously proposed concept that alternative start codons in early exons can be used to initiate the translation of functional ABO glycosyltransferase.


Asunto(s)
Antígenos de Grupos Sanguíneos , Glicosiltransferasas , Humanos , Alelos , Glicosiltransferasas/genética , Genotipo , Fenotipo , Células HeLa , Sistema del Grupo Sanguíneo ABO/genética
8.
Nat Commun ; 14(1): 5001, 2023 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-37591894

RESUMEN

Genetic determinants underlying most human blood groups are now clarified but variation in expression levels remains largely unexplored. By developing a bioinformatics pipeline analyzing GATA1/Chromatin immunoprecipitation followed by sequencing (ChIP-seq) datasets, we identify 193 potential regulatory sites in 33 blood-group genes. As proof-of-concept, we aimed to delineate the low-expressing complement receptor 1 (CR1) Helgeson phenotype on erythrocytes, which is correlated with several diseases and protects against severe malaria. We demonstrate that two candidate CR1 enhancer motifs in intron 4 bind GATA1 and drive transcription. Both are functionally abolished by naturally-occurring SNVs. Erythrocyte CR1-mRNA and CR1 levels correlate dose-dependently with genotype of one SNV (rs11117991) in two healthy donor cohorts. Haplotype analysis of rs11117991 with previously proposed markers for Helgeson shows high linkage disequilibrium in Europeans but explains the poor prediction reported for Africans. These data resolve the longstanding debate on the genetic basis of inherited low CR1 and form a systematic starting point to investigate the blood group regulome.


Asunto(s)
Células Eritroides , Factor de Transcripción GATA1 , Receptores de Complemento 3b , Humanos , Pueblo Africano , Biología Computacional , Factor de Transcripción GATA1/genética , Factor de Transcripción GATA1/metabolismo , Genotipo , Intrones , Fenotipo , Receptores de Complemento 3b/genética , Receptores de Complemento 3b/metabolismo , Secuenciación de Inmunoprecipitación de Cromatina , Células Eritroides/metabolismo , Pueblo Europeo
9.
Vox Sang ; 118(8): 690-694, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37265146

RESUMEN

BACKGROUND AND OBJECTIVES: The extremely rare Rhnull phenotype is characterized by the absence of all Rh antigens on erythrocytes. It is divided into the regulator and amorph types based on the underlying genetic background. The more common regulator type depends on critical variants silencing RHAG, which encodes RhAG glycoprotein, necessary for RhD/RhCE expression. Rhnull cells have altered expression of glycophorin B and LW glycoprotein. MATERIALS AND METHODS: Four unrelated Rhnull individuals were investigated. Serological testing was performed according to standard blood bank practice. RHD/RHCE and S/s allele-specific Polymerase chain reaction (PCR) genotyping was done on genomic DNA using in-house PCR assays. RHAG, and in some cases also RHD/RHCE, were sequenced. Initial s phenotyping results triggered additional serological investigation. RESULTS: Anti-Rh29 was identified in all four individuals. Extended typing with anti-S and anti-s showed that the three samples predicted to type as s+ failed to react with 2 of 5 anti-s. Sequence analysis of all 10 RHAG exons and the immediate intron/exon boundaries revealed a single nucleotide variant in the 3'-end of intron 6, c.946 -2a>g in all samples. RHD/RHCE showed no alterations. CONCLUSION: A novel Nordic Rhnull allele was identified. In addition, it was shown that s+ Rhnull red blood cells are not only U- but also have qualitative changes in their s antigen expression.


Asunto(s)
Antígenos de Grupos Sanguíneos , Sistema del Grupo Sanguíneo Rh-Hr , Sistema del Grupo Sanguíneo Rh-Hr/genética , Fenotipo , Secuencia de Bases , Reacción en Cadena de la Polimerasa
10.
Pathogens ; 12(6)2023 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-37375493

RESUMEN

Babesia is spread to humans via ticks or blood transfusions. Severity of Plasmodium falciparum malaria is strongly correlated to the ABO blood group of the patient. Babesia divergens is an intraerythrocytic parasite with many similarities to malaria, but the impact of ABO on the susceptibility to and progression of the infection in humans is unknown. We have now cultured B. divergens in human group A, B and O erythrocytes in vitro and measured rates of multiplication. The predilection for the different erythrocyte types was also determined using an in vitro erythrocyte preference assay when the parasites were grown in group A, B or O erythrocytes over time and then offered to invade differently stained erythrocytes of all the blood types at the same time. The results showed no difference in multiplication rates for the different blood types, and the parasite exhibited no obvious morphological differences in the different blood types. When cultured first in one blood type and then offered to grow in the others, the preference assay showed that there was no difference between the A, B or O blood groups. In conclusion, this indicates that individuals of the different ABO blood types are likely to be equally susceptible to B. divergens infections.

11.
Am J Transplant ; 23(4): 512-519, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36732087

RESUMEN

ABO compatibility is important for kidney transplantation, with longer waitlist times for blood group B kidney transplant candidates. However, kidneys from non-A1 (eg, A2) subtype donors, which express less A antigen, can be safely transplanted into group B recipients. ABO subtyping is routinely performed using anti-A1 lectin, but DNA-based genotyping is also possible. Here, we compare lectin and genotyping testing. Lectin and genotype subtyping was performed on 554 group A deceased donor samples at 2 transplant laboratories. The findings were supported by 2 additional data sets of 210 group A living kidney donors and 124 samples with unclear lectin testing sent to a reference laboratory. In deceased donors, genotyping found 65% more A2 donors than lectin testing, most with weak lectin reactivity, a finding supported in living donors and samples sent for reference testing. DNA sequencing and flow cytometry showed that the discordances were because of several factors, including transfusion, small variability in A antigen levels, and rare ABO∗A2.06 and ABO∗A2.16 sequences. Although lectin testing is the current standard for transplantation subtyping, genotyping is accurate and could increase A2 kidney transplant opportunities for group B candidates, a difference that should reduce group B wait times and improve transplant equity.


Asunto(s)
Trasplante de Riñón , Humanos , Genotipo , Incompatibilidad de Grupos Sanguíneos , Donantes de Tejidos , Donadores Vivos , Sistema del Grupo Sanguíneo ABO/genética , Isoanticuerpos
12.
Transfusion ; 63(1): 47-58, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36271437

RESUMEN

BACKGROUND: Previous studies have reported Blood type O to confer a lower risk of SARS-CoV-2 infection, while secretor status and other blood groups have been suspected to have a similar effect as well. STUDY DESIGN AND METHODS: To determine whether any other blood groups influence testing positive for SARS-CoV-2, COVID-19 severity, or prolonged COVID-19, we used a large cohort of 650,156 Danish blood donors with varying available data for secretor status and blood groups ABO, Rh, Colton, Duffy, Diego, Dombrock, Kell, Kidd, Knops, Lewis, Lutheran, MNS, P1PK, Vel, and Yt. Of these, 36,068 tested positive for SARS-CoV-2 whereas 614,088 tested negative between 2020-02-17 and 2021-08-04. Associations between infection and blood groups were assessed using logistic regression models with sex and age as covariates. RESULTS: The Lewis blood group antigen Lea displayed strongly reduced SARS-CoV-2 susceptibility OR 0.85 CI[0.79-0.93] p < .001. Compared to blood type O, the blood types B, A, and AB were found more susceptible toward infection with ORs 1.1 CI[1.06-1.14] p < .001, 1.17 CI[1.14-1.2] p < .001, and 1.2 CI[1.14-1.26] p < .001, respectively. No susceptibility associations were found for the other 13 blood groups investigated. There was no association between any blood groups and COVID-19 hospitalization or long COVID-19. No secretor status associations were found. DISCUSSION: This study uncovers a new association to reduced SARS-CoV-2 susceptibility for Lewis type Lea and confirms the previous link to blood group O. The new association to Lea could be explained by a link between mucosal microbiome and SARS-CoV-2.


Asunto(s)
Antígenos de Grupos Sanguíneos , COVID-19 , Síndrome Post Agudo de COVID-19 , Humanos , Sistema del Grupo Sanguíneo ABO , Antígenos de Grupos Sanguíneos/genética , Estudios de Cohortes , COVID-19/sangre , COVID-19/genética , Síndrome Post Agudo de COVID-19/sangre , Síndrome Post Agudo de COVID-19/genética , SARS-CoV-2 , Predisposición Genética a la Enfermedad
15.
Vox Sang ; 117(11): 1332-1344, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36121188

RESUMEN

BACKGROUND AND OBJECTIVES: Under the ISBT, the Working Party (WP) for Red Cell Immunogenetics and Blood Group Terminology is charged with ratifying blood group systems, antigens and alleles. This report presents the outcomes from four WP business meetings, one located in Basel in 2019 and three held as virtual meetings during the COVID-19 pandemic in 2020 and 2021. MATERIALS AND METHODS: As in previous meetings, matters pertaining to blood group antigen nomenclature were discussed. New blood group systems and antigens were approved and named according to the serologic, genetic, biochemical and cell biological evidence presented. RESULTS: Seven new blood group systems, KANNO (defined numerically as ISBT 037), SID (038), CTL2 (039), PEL (040), MAM (041), EMM (042) and ABCC1 (043) were ratified. Two (039 and 043) were de novo discoveries, and the remainder comprised reported antigens where the causal genes were previously unknown. A further 15 blood group antigens were added to the existing blood group systems: MNS (002), RH (004), LU (005), DI (010), SC (013), GE (020), KN (022), JMH (026) and RHAG (030). CONCLUSION: The ISBT now recognizes 378 antigens, of which 345 are clustered within 43 blood group systems while 33 still have an unknown genetic basis. The ongoing discovery of new blood group systems and antigens underscores the diverse and complex biology of the red cell membrane. The WP continues to update the blood group antigen tables and the allele nomenclature tables. These can be found on the ISBT website (http://www.isbtweb.org/working-parties/red-cell-immunogenetics-and-blood-group-terminology/).


Asunto(s)
Antígenos de Grupos Sanguíneos , COVID-19 , Eritrocitos , Humanos , Antígenos de Grupos Sanguíneos/genética , Transfusión Sanguínea , Inmunogenética , Pandemias , Eritrocitos/inmunología
17.
Int J Mol Sci ; 23(7)2022 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-35409292

RESUMEN

The Sda histo-blood group antigen (GalNAcß1-4(NeuAcα2-3)Galß-R) is implicated in various infections and constitutes a potential biomarker for colon cancer. Sd(a−) individuals (2−4% of Europeans) may produce anti-Sda, which can lead to incompatible blood transfusions, especially if donors with the high-expressing Sd(a++)/Cad phenotype are involved. We previously reported the association of B4GALNT2 mutations with Sd(a−), which established the SID blood-group system. The present study provides causal proof underpinning this correlation. Sd(a−) HEK293 cells were transfected with different B4GALNT2 constructs and evaluated by immunostaining and glycoproteomics. The predominant SIDnull candidate allele with rs7224888:T>C (p.Cys406Arg) abolished Sda synthesis, while this antigen was detectable as N- or O-glycans on glycoproteins following transfection of wildtype B4GALNT2. Surprisingly, two rare missense variants, rs148441237:A>G and rs61743617:C>T, found in a Sd(a−) compound heterozygote, gave results similar to wildtype. To elucidate on whether Sd(a++)/Cad also depends on B4GALNT2 alterations, this gene was sequenced in five individuals. No Cad-specific changes were identified, but a detailed erythroid Cad glycoprotein profile was obtained, especially for glycophorin-A (GLPA) O-glycosylation, equilibrative nucleoside transporter 1 (S29A1) O-glycosylation, and band 3 anion transport protein (B3AT) N-glycosylation. In conclusion, the p.Cys406Arg ß4GalNAc-T2 variant causes Sda-deficiency in humans, while the enigmatic Cad phenotype remains unresolved, albeit further characterized.


Asunto(s)
Antígenos de Grupos Sanguíneos , N-Acetilgalactosaminiltransferasas , Antígenos de Grupos Sanguíneos/genética , Células HEK293 , Humanos , N-Acetilgalactosaminiltransferasas/genética , N-Acetilgalactosaminiltransferasas/metabolismo , Fenotipo
19.
Hemasphere ; 6(2): e670, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35098039

RESUMEN

In 2016, the European Hematology Association (EHA) published the EHA Roadmap for European Hematology Research 1 aiming to highlight achievements in the diagnostics and treatment of blood disorders, and to better inform European policy makers and other stakeholders about the urgent clinical and scientific needs and priorities in the field of hematology. Each section was coordinated by 1-2 section editors who were leading international experts in the field. In the 5 years that have followed, advances in the field of hematology have been plentiful. As such, EHA is pleased to present an updated Research Roadmap, now including eleven sections, each of which will be published separately. The updated EHA Research Roadmap identifies the most urgent priorities in hematology research and clinical science, therefore supporting a more informed, focused, and ideally a more funded future for European hematology research. The 11 EHA Research Roadmap sections include Normal Hematopoiesis; Malignant Lymphoid Diseases; Malignant Myeloid Diseases; Anemias and Related Diseases; Platelet Disorders; Blood Coagulation and Hemostatic Disorders; Transfusion Medicine; Infections in Hematology; Hematopoietic Stem Cell Transplantation; CAR-T and Other Cell-based Immune Therapies; and Gene Therapy.

20.
Vox Sang ; 117(2): 157-165, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34155647

RESUMEN

BACKGROUND AND OBJECTIVES: Non-invasive assays for predicting foetal blood group status in pregnancy serve as valuable clinical tools in the management of pregnancies at risk of detrimental consequences due to blood group antigen incompatibility. To secure clinical applicability, assays for non-invasive prenatal testing of foetal blood groups need to follow strict rules for validation and quality assurance. Here, we present a multi-national position paper with specific recommendations for validation and quality assurance for such assays and discuss their risk classification according to EU regulations. MATERIALS AND METHODS: We reviewed the literature covering validation for in-vitro diagnostic (IVD) assays in general and for non-invasive foetal RHD genotyping in particular. Recommendations were based on the result of discussions between co-authors. RESULTS: In relation to Annex VIII of the In-Vitro-Diagnostic Medical Device Regulation 2017/746 of the European Parliament and the Council, assays for non-invasive prenatal testing of foetal blood groups are risk class D devices. In our opinion, screening for targeted anti-D prophylaxis for non-immunized RhD negative women should be placed under risk class C. To ensure high quality of non-invasive foetal blood group assays within and beyond the European Union, we present specific recommendations for validation and quality assurance in terms of analytical detection limit, range and linearity, precision, robustness, pre-analytics and use of controls in routine testing. With respect to immunized women, different requirements for validation and IVD risk classification are discussed. CONCLUSION: These recommendations should be followed to ensure appropriate assay performance and applicability for clinical use of both commercial and in-house assays.


Asunto(s)
Antígenos de Grupos Sanguíneos , Antígenos de Grupos Sanguíneos/genética , Femenino , Sangre Fetal , Feto , Genotipo , Humanos , Embarazo , Diagnóstico Prenatal , Sistema del Grupo Sanguíneo Rh-Hr/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...