Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Chemosphere ; 359: 142234, 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38705418

RESUMEN

Flavonoids, a class of natural products with a variety of applications in nutrition, pharmacy and as biopesticides, could substitute more harmful synthetic chemicals that persist in the environment. To gain a better understanding of the biodegradability of flavonoids and the influence of structural features, firstly, the ultimate biodegradation of 19 flavonoids was investigated with the Closed Bottle Test according to the OECD guideline 301 D. Secondly, regarding the fast abiotic degradation reported for several flavonoids with severe concentration decrease within hours and its possible impacts on the processes behind the ultimate biodegradation, primary degradation of 4 selected flavonoids was compared at conditions representing biodegradation, abiotic degradation, and mixed substrates by monitoring the flavonoids' concentrations with HPLC-UV/vis. Our results showed that 17 out of the 19 tested flavonoids were readily biodegradable. Structural features like a hydroxy group at C3, the C2-C3 bond order, a methoxy group in the B ring, and the position of the B ring in regard to the chromene core did not affect biodegradation of the tested flavonoids. Only flavone without any hydroxy groups and morin with an uncommon 2',4' pattern of hydroxy groups were non-readily biodegradable. Monitoring the concentration of 4 selected flavonoids by HPLC-UV/vis revealed that biodegradation occurred faster than abiotic degradation at CBT conditions with no other carbon sources present. The presence of an alternative carbon source tends to increase lag phases and decrease biodegradation rates. At this condition, abiotic degradation contributed to the degradation of unstable flavonoids. Overall, as a first tier to assess the environmental fate, our results indicate low risks for persistence of most flavonoids. Thus, flavonoids could represent benign substitutes for persistent synthetic chemicals.

2.
Sci Total Environ ; 921: 171027, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38378053

RESUMEN

Sulfonamide antibiotics (SUAs) released into the environment can affect environmental und human health, e.g., by accelerating the development and selection of antimicrobial resistant bacteria. Benign by Design (BbD) of SUAs is an effective risk prevention approach. BbD principles aim for fast and complete mineralization or at least deactivation of the SUA after release into the aquatic environment. Main objective was to test if mixtures of transformation products (TPs) generated via photolysis of SUAs can be used as an efficient way to screen for similarly effective but better biodegradable SUA alternatives. Six SUAs were photolyzed (Hg ultraviolet (UV) light), and generated UV-mixtures analysed by high performance liquid chromatography coupled to an UV and tandem mass spectrometry detector. UV-mixtures were screened for antibiotic activity (luminescence bacteria test, LBT, on luminescence and growth inhibition of Aliivibrio Fischeri) and environmental biodegradability (manometric respirometry test, MRT, OECD 301F) using untreated parent SUAs in comparison. Additionally, ready environmental biodegradability of three commercially available hydroxylated sulfanilamide derivatives was investigated. SUA-TPs contributed to acute and chronic bacterial luminescence inhibition by UV-mixtures. LBT's third endpoint, growth inhibition, was not significant for UV-mixtures. However, it cannot be excluded for tested TPs as concentrations were lower than parents' concentrations and inhibition by most parental concentrations tested was also not significant. HPLC analysis of MRT samples revealed that one third of SUA-TPs was reduced during incubation. Three of these TPs, likely OH-SIX, OH-SMX and OH-STZ, were of interest for BbD because the sulfonamide moiety is still present. However, hydroxylated sulfanilamide derivatives, tested to investigate the effect of hydroxylation on biodegradability, were not readily biodegraded. Thus, improving mineralization through hydroxylation as a general rule couldn't be confirmed, and no BbD candidate could be identified. This study fills data gaps on bioactivity and environmental biodegradability of SUAs' TP-mixtures. Findings may support new redesign approaches.


Asunto(s)
Sulfonamidas , Contaminantes Químicos del Agua , Humanos , Sulfonamidas/química , Biodegradación Ambiental , Sulfanilamida/análisis , Antibacterianos/química , Fotólisis , Contaminantes Químicos del Agua/análisis , Rayos Ultravioleta
3.
Chemosphere ; 352: 141298, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38301834

RESUMEN

Pharmaceutical cellulosic polymers will inevitably reach natural water systems if they are not removed after entering wastewater. Biodegradation of organic chemicals in sewage or in the aquatic environment is an important removal mechanism. In this study, we investigated the environmental biodegradation of 14 cellulose derivatives commonly utilized as pharmaceutical excipients using three different test systems that are based on the closed bottle test (OECD 301D) and the manometric respirometry test (OECD 301F). For the different cellulose derivatives tested, we observed varying degrees of biodegradation ranging from 0 to 20.4 % chemical oxygen demand (COD). However, none met the criteria for classification as 'readily biodegradable'. In addition, 10 out of 14 cellulose derivatives and/or their possible transformation products formed during the experiments, may exhibit possible toxic inhibitory effects on the inoculum. This includes one or several derivatives of hydroxy propyl methyl cellulose, hydroxy propyl cellulose, methyl cellulose, ethyl cellulose, and hydroxy ethyl cellulose. Based on the results obtained, we have developed a graded classification score ('traffic light system') for excipient biodegradation. This could help streamline the assessment and classification of cellulose derivatives concerning risk of persistence and potential adverse environmental effects, thereby assisting in the prioritization of more favorable compounds. In the long term, however, excipients should be designed from the very beginning to be biodegradable and mineralizable in the environment ('benign by design').


Asunto(s)
Excipientes , Aguas del Alcantarillado , Biodegradación Ambiental , Aguas del Alcantarillado/química , Agua , Celulosa
4.
Nat Commun ; 14(1): 5131, 2023 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-37612271

RESUMEN

The possibility to detect and analyze single or few biological molecules is very important for understanding interactions and reaction mechanisms. Ideally, the molecules should be confined to a nanoscale volume so that the observation time by optical methods can be extended. However, it has proven difficult to develop reliable, non-invasive trapping techniques for biomolecules under physiological conditions. Here we present a platform for long-term tether-free (solution phase) trapping of proteins without exposing them to any field gradient forces. We show that a responsive polymer brush can make solid state nanopores switch between a fully open and a fully closed state with respect to proteins, while always allowing the passage of solvent, ions and small molecules. This makes it possible to trap a very high number of proteins (500-1000) inside nanoscale chambers as small as one attoliter, reaching concentrations up to 60 gL-1. Our method is fully compatible with parallelization by imaging arrays of nanochambers. Additionally, we show that enzymatic cascade reactions can be performed with multiple native enzymes under full nanoscale confinement and steady supply of reactants. This platform will greatly extend the possibilities to optically analyze interactions involving multiple proteins, such as the dynamics of oligomerization events.


Asunto(s)
Nanoporos , Polímeros , Sustancias Macromoleculares , Ligando de CD40 , Solventes
5.
Int J Cosmet Sci ; 45 Suppl 1: 101-126, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37638891

RESUMEN

Organic micropollutants of concern-including organic UV filters (UVF)-are getting increasing attention. Personal care products such as sunscreens or cosmetic articles often contain large quantities of UVF. These substances enter the environment either directly (during outdoor activities) or indirectly (via sewages from households). Therefore, the removal or degradation of UVF by natural or technical treatment processes is important to understand. UVF are often incompletely removed and transformed to side products of incomplete mineralization by abiotic and biotic processes. An extensive overview on transformation products (TPs) is essential to systematically identify knowledge gaps and to derive research needs. While there are many reviews on the UVF themselves, the number of reviews which focus on their TPs is limited. Consequently, this review gives an overview on the latest findings regarding TPs of UVF. In this publication, known TPs of UVF, which were formed during abiotic and biotic processes, are reviewed. Target substances were defined and a literature database was reviewed for studies on TPs of the target substances. The first list of studies was shortened stepwise, thus generating a final list of studies which contained only the relevant studies. Since biodegradation is one of the most important pathways for removal of organic compounds from the environment, this review presents an overview on known TPs of organic UVF and their biodegradability, which determines their environmental fate. In this way, all identified TPs of UVF were listed and checked for information on their biodegradability. A total of 2731 records of studies were assessed. Forty-two studies, which assessed 46 processes that lead to the formation of identified TPs, were included in this review. One hundred and seventyseven different TPs resulting from 11 different UVF were identified. Little to no data on the biodegradability was found for TPs. This indicates a severe lack of data on the biodegradability of TPs of organic UVF substances. Since most TPs lack information on biodegradability, further research should provide information on both-identity and biodegradability-of formed TPs to be able to assess their hazardousness for the environment.


Les micropolluants organiques préoccupants, y compris les filtres UV organiques (UVF), font l'objet d'une attention croissante. Les produits de soins personnels tels que les écrans solaires ou les articles cosmétiques contiennent souvent de grandes quantités de filtres UV. Ces substances pénètrent dans l'environnement soit directement (lors d'activités de plein air), soit indirectement (via les eaux usées ménagères). Il est donc important de comprendre l'élimination ou la dégradation des UVF par des processus de traitement naturels ou techniques. Les UVF sont souvent éliminés de manière incomplète et transformés en produits secondaires de minéralisation incomplète par des processus abiotiques et biotiques. Il est essentiel de disposer d'une vue d'ensemble des produits de transformation pour identifier systématiquement les lacunes dans les connaissances et déterminer les besoins en matière de recherche. S'il existe de nombreuses études sur les UVF eux-mêmes, le nombre d'études portant sur leurs produits de transformation est limité. Par conséquent, cette étude donne un aperçu des dernières découvertes concernant les produits de transformation des UVF. Dans cette publication, les TP connus des UVF, qui ont été formés au cours de processus abiotiques et biotiques, sont passés en revue. Des substances cibles ont été définies et une base de données bibliographiques a été examinée pour trouver des études sur les PT des substances cibles. La première liste d'études a été raccourcie progressivement, ce qui a permis d'obtenir une liste finale d'études qui ne contenait que les études pertinentes. La biodégradation étant l'une des voies les plus importantes pour l'élimination des composés organiques de l'environnement, cette étude présente une vue d'ensemble des PT connus des UVF organiques et de leur biodégradabilité, qui détermine leur devenir dans l'environnement. Ainsi, tous les PT identifiés d'UVF ont été répertoriés et des informations sur leur biodégradabilité ont été vérifiées. Au total, 2731 enregistrements d'études ont été évalués. Quarante-deux études, qui ont évalué 46 processus conduisant à la formation des polluants organiques persistants identifiés, ont été incluses dans cette analyse. Cent soixante-dix- sept TP différents résultant de 11 UVF différents ont été identifiés. Peu ou pas de données sur la biodégradabilité ont été trouvées pour les PT. Cela indique un manque important de données sur la biodégradabilité des produits finis des substances UVF organiques. Étant donné que la plupart des PT manquent d'informations sur la biodégradabilité, les recherches futures devraient fournir des informations sur l'identité et la biodégradabilité des PT formés afin de pouvoir évaluer leur dangerosité pour l'environnement.

6.
Adv Mater ; 35(31): e2302028, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37277121

RESUMEN

Dynamically tunable reflective structural colors are attractive for reflective displays (electronic paper). However, it is challenging to tune a thin layer of structural color across the full red-green-blue (RGB) basis set of colors at video rates and with long-term stability. In this work, this is achieved through a hybrid cavity built from metal-insulator-metal (MIM) "nanocaves" and an electrochromic polymer (PProDOTMe2 ). The reflective colors are modulated by electrochemically doping/dedoping the polymer. Compared with traditional subpixel-based systems, this hybrid structure provides high reflectivity (>40%) due to its "monopixel" nature and switches at video rates. The polymer bistability helps deliver ultralow power consumption (≈2.5 mW cm-2 ) for video display applications and negligible consumption (≈3 µW cm-2 ) for static images, compatible with fully photovoltaic powering. In addition, the color uniformity of the hybrid material is excellent (over cm-2 ) and the scalable fabrication enables large-area production.

7.
Front Chem ; 10: 986987, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36186600

RESUMEN

The race for environmentally-safe pesticides and biocides has been showing solutions ranging from pest-pathologic microorganisms to safer botanical extracts that can be incorporated in several formulations. Often linked to high biological activities, fruit residues can be recovered from food processing factories to obtain complex extracts enriched with several bioactive chemicals. Mango (Mangifera indica) fruits are processed into food products in high volumes across the globe and generate a consistent residue that contains, among others, the xanthonoid mangiferin and the flavonoid hyperoside. Both compounds have been linked to several pharmacological and pesticidal activities, although not yet studied for algicidal applications, a current concern specially for antifouling and harmful algae blooms control products. The challenge lies, however, not only on the degree of activity of the natural compounds, but also on the processes necessary to separate, isolate and formulate the bioactive compounds in order to obtain an effective final product. The solvent choice plays an important part regarding the selectivity of the separation and isolation of the main bioactive compounds from the solid waste matrix. Ethanolic mixtures in water have been consolidated recently as a promising extraction medium for flavonoids and xanthonoids, although hindered by solubility limitations. In this paper, aqueous solutions of ionic liquids (ILs) were tested, screened and optimized using Box-Behnken design and Response Surface Methodology to obtain mangiferin and hyperoside-enriched extracts. Results showed a greater concentration of mangiferin and hyperoside with 1-octyl-3-methylimidazolium chloride ([C8MIm] Cl), when compared to choline acetate and ethanolic extracts using optimized parameters. In terms of sufficiency, solvent selection between ILs and ethanolic extraction media was discussed considering economic and environmental factors. Ethanol/water mango waste extracts were then studied for their activity against Raphidocelis subcapitata microalgae, which showed a higher growth inhibition in comparison to standard solutions of mangiferin and hyperoside, either individually and in a 1:1 mixture. A EC50 value was found in relative low concentrations of mangiferin and hyperoside (0.015 mg L-1) detected in the extract, showcasing a promising approach to the direct use of residuary plant extracts in biocidal formulations.

8.
Sci Total Environ ; 830: 154744, 2022 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-35339561

RESUMEN

Sulfonamides (SUAs) and their transformation products (TPs) contribute to environmental pollution. Importance of research on TPs' properties has been emphasised, e.g. allowing a comprehensive environmental risk assessment of their parent compounds. However, TPs' properties have been discussed in reviews on SUAs only marginally, if at all. For the first time, a scientific literature review aims to discuss the current state of knowledge on SUA-TPs including research gaps, and commonalities of SUA-TPs and TPs in general. Literature on SUA-TPs was consulted systematically to collect data on occurrence, physicochemical properties, degradability, and (eco)toxicity. TPs of 14 SUAs were reviewed, and aspects applicable for TPs in general were identified to guide future handling of TPs as a complex category of compounds. The data of sulfamethoxazole (SMX), the main representative, was analysed in more detail to discuss insights on a chemical level. Literature search resulted in 607 SUA-TPs reported in 222 publications. Only for 4%, 31%, and 35% of these TPs, data on occurrence in aquatic systems, on degradation, and (eco)toxicity, respectively, was found. Several mixtures of SUA-TPs were more ecotoxic than their parent compounds, e.g. 10 of 15 mixtures of SMX-TPs. Only few TPs were tested as single substance. Although several TPs could be eliminated experimentally, their mineralisation rate remained often unknown. Thus, further transformation to persistent TPs could not be ruled out. Standardised biodegradability tests of individual TPs would monitor their mineralisation rate, but are almost completely lacking. Reasons are likely poor availability of TPs, but also the focus on abiotic water treatment. Data assessment demonstrated that data of high significance according to standard methods, e.g. OECD methods for chronic (eco)toxicity and ready biodegradability, is needed to assess environmental risks of prioritised TPs, but also to redesign their parent pharmaceutical for complete environmental mineralisation in a long-term (Benign by Design).


Asunto(s)
Contaminantes Químicos del Agua , Purificación del Agua , Sulfametoxazol , Sulfanilamida , Sulfonamidas/química , Sulfonamidas/toxicidad , Contaminantes Químicos del Agua/análisis
9.
Chemosphere ; 299: 134385, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35337825

RESUMEN

Ionic liquids (ILs) are increasingly of interest for environmentally open applications. Therefore, completely mineralising ILs are highly desirable. We reviewed the current state of knowledge on ILs' environmental biodegradability and identified research needs. Literature data were evaluated as for applied standard methods (e.g. OECD, ISO, APHA) for biodegradation of ILs in order to get an overview on the validity of the test results received and ILs' biodegradability. 109 studies were evaluated. The ILs were categorised based on the cation's core structure. The biodegradation data was classified according to a traffic light system (red: 0-19% degradation, amber: 20-59% degradation, green: ≥ 60% degradation). Not all studies could be assessed for compliance with the test guidelines due to missing test parameters. Moreover, no study discussed all validation criteria as defined by the test guidelines. Consequently, the reliability and quality of the existing biodegradation data is restrained. With regard to the different cations classified for ≥ 60% biodegradability, phosphonium ILs are the least biodegradable, followed by imidazolium ones. The most ILs that were biodegradable are cholinium ILs. The results indicate the need for more and qualitatively better testing according to standard methods including application and reporting of all validation criteria in order to get reliable data that enables the comparison of the test data and a comprehensive understanding of ILs' biodegradability. Moreover, reliable data allows the selection of sufficiently environmentally biodegradable ILs if an introduction into the environment during use cannot be excluded.


Asunto(s)
Líquidos Iónicos , Biodegradación Ambiental , Cationes , Líquidos Iónicos/química , Reproducibilidad de los Resultados
10.
Sci Total Environ ; 824: 153781, 2022 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-35176375

RESUMEN

Biopesticides obtained from renewable resources and associated with biodegradability have the potential to address resource limitations and environmental pollution, often caused by many conventional pesticides, due to the facility of natural products to run in natural nutrient cycles. Flavonoids are considered benign substitutes for pesticides, however, little comprehensive information of their pesticidal activities and critical evaluation of their associated advantages is available. Therefore, this systematic review assessed sources, structures, activities and the environmental fate of flavonoids on a basis of 201 selected publications. We identified 281 different flavonoids that were investigated for their pesticidal activity as either a pure compound or a flavonoid-containing extract, with quercetin, kaempferol, apigenin, luteolin and their glycosides as the most studied compounds. Agricultural or food waste, a potential sustainable source for flavonoids, represent 10.6% of the plant sources of flavonoids within these studies, showing the currently underutilization of these preferable feedstocks. Analysis of pesticidal activities and target organisms revealed a broad target spectrum for the class of flavonoids, including fungi, insects, plants, bacteria, algae, nematodes, molluscs and barnacles. Little information is available on the environmental fate and biodegradation of flavonoids, and a connection to studies investigating pesticidal activities is largely missing. Emerging from these findings is the need for comprehensive understanding of flavonoids pesticidal activities with emphasis on structural features that influence activity and target specificity to avoid risks for non-target organisms. Only if the target spectrum and environmental fate of a potential biopesticide are known it can serve as a benign substitute. Then, flavonoids can be integrated in a valorization process of agricultural and food waste shifting the extract-produce-consume linear chain to a more circular economy.


Asunto(s)
Plaguicidas , Eliminación de Residuos , Agentes de Control Biológico , Flavonoides , Alimentos , Plaguicidas/análisis , Plantas
11.
Adv Mater ; 33(49): e2105004, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34626028

RESUMEN

Dynamic control of structural colors across the visible spectrum with high brightness has proven to be a difficult challenge. Here, this is addressed with a tuneable reflective nano-optical cavity that uses an electroactive conducting polymer (poly(thieno[3,4-b]thiophene)) as spacer layer. Electrochemical doping and dedoping of the polymer spacer layer provides reversible tuning of the cavity's structural color throughout the entire visible range and beyond. Furthermore, the cavity provides high peak reflectance that varies only slightly between the reduced and oxidized states of the polymer. The results indicate that the polymer undergoes large reversible thickness changes upon redox tuning, aided by changes in optical properties and low visible absorption. The electroactive cavity concept may find particular use in reflective displays, by opening for tuneable monopixels that eliminate limitations in brightness of traditional subpixel-based systems.

12.
Adv Mater ; 33(41): e2103217, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34448507

RESUMEN

Reflective displays or "electronic paper" technologies provide a solution to the high energy consumption of emissive displays by simply utilizing ambient light. However, it has proven challenging to develop electronic paper with competitive image quality and video speed capabilities. Here, the first technology that provides video speed switching of structural colors with high contrast over the whole visible is shown. Importantly, this is achieved with a broadband-absorbing polarization-insensitive electrochromic polymer instead of liquid crystals, which makes it possible to maintain high reflectivity. It is shown that promoting electrophoretic ion transport (drift motion) improves the switch speed. In combination with new nanostructures that have high surface curvature, this enables video speed switching (20 ms) at high contrast (50% reflectivity change). A detailed analysis of the optical signal during switching shows that the polaron formation starts to obey first order reaction kinetics in the video speed regime. Additionally, the system still operates at ultralow power consumption during video speed switching (<1 mW cm-2 ) and has negligible power consumption (<1 µW cm-2 ) in bistability mode. Finally, the fast switching increases device lifetime to at least 107 cycles, an order of magnitude more than state-of-the-art.

13.
Nano Lett ; 21(10): 4343-4350, 2021 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-33969987

RESUMEN

The possibility of actively controlling structural colors has recently attracted a lot of attention, in particular for new types of reflective displays (electronic paper). However, it has proven challenging to achieve good image quality in such devices, mainly because many subpixels are necessary and the semitransparent counter electrodes lower the total reflectance. Here we present an inorganic electrochromic nanostructure based on tungsten trioxide, gold, and a thin platinum mirror. The platinum reflector provides a wide color range and makes it possible to "reverse" the device design so that electrolyte and counter electrode can be placed behind the nanostructures with respect to the viewer. Importantly, this makes it possible to maintain high reflectance regardless of how the electrochemical cell is constructed. We show that our nanostructures clearly outperform the latest commercial color e-reader in terms of both color range and brightness.

14.
Chemosphere ; 279: 130442, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-33887595

RESUMEN

Organosilicon compounds have numerous applications in consumer products. After entering the environment most of them are resistant against microbial degradation and they persist in the environment. Accordingly, they are ubiquitously present in the environment. Therefore, better environmentally degradable organosilicon compounds are urgently needed. A systematic investigation of environmental degradability of organosilicon compounds allows to derive some general design principles, which in turn would enable chemists to reduce or better avoid environmental persistence of organosilicon compounds in the environment. Therefore, in this study, all organosilicon substances registered in the European Chemicals Agency (ECHA) database were evaluated for their environmental biodegradability. Results of own experiments with different organosilicon substances were added to extend the data basis. A dataset was generated. An assessment of all data was done and invalid data were excluded. The remaining 182 substances were grouped regarding their structure to derive general rules for the environmental biodegradability of organosilicon compounds. Non-biodegradable at all were for example cyclic, linear and branched siloxanes. Groups like ethers, esters, oximes, amines, and amides were prone to hydrolysis, which can result in readily biodegradable intermediates if they do not contain silicon functional groups anymore. This knowledge could be used for the design of better degradable organosilicon compounds as non-degradable substances should be avoided if they enter the environment after their usage.


Asunto(s)
Compuestos de Organosilicio , Biodegradación Ambiental , Hidrólisis , Silicio , Siloxanos
15.
Sci Rep ; 11(1): 7242, 2021 03 31.
Artículo en Inglés | MEDLINE | ID: mdl-33790334

RESUMEN

Groundwater quality in urban catchments is endangered by the input of biocides, such as those used in facade paints to suppress algae and fungal growth and washed off by heavy rainfall. Their retention in storm water infiltration systems (SIS) depends, in addition to their molecular properties, on chemical properties and structure of the integrated soil layer. These soil properties change over time and thus possibly also the relevance of preferential flow paths, e.g. due to ongoing biological activity. To investigate the mobility of biocides in SIS, we analyzed the breakthrough of differently adsorbing tracers (bromide, uranine, sulforhodamine B) and commonly used biocides (diuron, terbutryn, octhilinone) in laboratory column experiments of undisturbed soil cores of SIS, covering ages from 3 to 18 years. Despite similar soil texture and chemical soil properties, retention of tracers and biocides differed distinctly between SIS. Tracer and biocide breakthrough ranged from 54% and 5%, to 96% and 54%, respectively. We related the reduced solute retention to preferential transport in macropores as could be confirmed by brilliant blue staining. Our results suggest an increasing risk of groundwater pollution with increasing number of macropores related to biological activity and the age of SIS.

16.
J Hazard Mater ; 392: 122429, 2020 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-32208309

RESUMEN

Silicones have many applications and are produced in large quantities. Despite their potential toxicity, information on their environmental mineralisation is scarce. Therefore, we investigated a group of five organosilicon compounds (o-MeOC6H4SiMe3 (1), p-MeOC6H4SiMe3 (2), (p-MeOC6H4)2SiMe2 (3), o-Me2NC6H4SiMe3 (4) and p-Me2NC6H4SiMe3 (5)), recently developed to be 'benign by design' based on their readily degradable core structure. Five different degradability tests were performed, one assessing hydrolytic and two analysing biological and photolytic stability, respectively. All substances, except (p-MeOC6H4)2SiMe2 (3), hydrolysed within 24 h to 50% indicating that this is one of the major pathways of their primary elimination. In agreement with previous research, none of the substances was readily biodegradable. In contrast, 100% of p-Me2NC6H4SiMe3 (5) was primarily eliminated by photolytic and hydrolytic processes. The elimination rates of the other substances ranged from 7% to 64%. Irradiation at shorter wavelengths increased both the extent and speed of photodegradation. Eleven transformation products of p-Me2NC6H4SiMe3 (5) were detected, all of which were completely eliminated within 64 min of irradiation with a Hg lamp (200-400 nm). The insertion of an electron-donating group on the benzene ring like in p-Me2NC6H4SiMe3 (5) clearly enhanced photolytic degradability but further research is necessary to achieve truly biodegradable silicones.


Asunto(s)
Contaminantes Ambientales , Compuestos de Organosilicio , Aerobiosis , Biodegradación Ambiental , Contaminantes Ambientales/química , Contaminantes Ambientales/metabolismo , Contaminantes Ambientales/efectos de la radiación , Concentración de Iones de Hidrógeno , Hidrólisis , Luz , Estructura Molecular , Compuestos de Organosilicio/química , Compuestos de Organosilicio/metabolismo , Compuestos de Organosilicio/efectos de la radiación , Fotólisis
17.
Environ Int ; 137: 105533, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32113087

RESUMEN

In order to conduct a fast and comprehensive toxicity screening of pesticide transformation products (TPs), this study used a tiered approach by a combination of in silico and experimental methods to determine the probability to be of relevance for risk assessment. The six pesticides Boscalid, Penconazole, Diuron, Terbutryn, Octhilinone (OIT), and Mecoprop were used as model compounds. Identification of corresponding environmental known and unknown TPs were done by literature analysis and photolysis experiments in combination. Aquatic solutions of the pesticides were photolysed to generate TPs which can be expected in the aquatic environment. The resulting mixtures were screened for TPs by high resolution LC-MS/MS. The herein developed approach was conducted at three different tiers: Literature review and in silico methods were used to predict exemplary the environmental bacterial toxicity and the genotoxicity of every single TP at tier I. In case of indications to be toxic, experiments at tier II were applied. Hereby, the photolytic mixtures containing parent compound and TPs were used for the consecutive toxicity test. Microtox assay for the parent compounds and the photolytic mixture was conducted to determine the acute and chronic toxicity and the growth inhibition of V. fischeri. Umu-tests were conducted to determine primary DNA damage. At tier III, single substance standards were used to conduct toxicity tests in case of toxic indication by previous tiers and availability of analytical standard. Identification of TPs revealed 45 known environmental TPs that originated from the six pesticides. The number of substances that need to be assessed was therefore more than sevenfold. By the tiered approach, it was possible to assess toxicological effects on environmental bacteria of 94% of the selected TPs. For 20% we found strong evidence to be toxic to environmental bacteria, as they were assessed at least at two tiers. For further 44% of the TPs we found slight evidence, as they could be assessed at one tier. Contrary, this approach turned out to be unsuitable to assess genotoxic effects of TPs neither by in silico tools nor by experiments. The number of substances that could probably pose a risk onto environment was quadrupled in comparison to the consideration of solely the parent compounds. Thus, this study demonstrates that the conducted screening approach allows for easy and fast identification of environmental relevant TPs. However, the study presented was a very first screening. Its applicability domain needs to be assessed further. For this purpose as a very next step the approach suggested here should be verified by applying additional endpoints and including additional parent compounds.


Asunto(s)
Ecotoxicología , Plaguicidas , Contaminantes Químicos del Agua , Cromatografía Liquida , Daño del ADN , Plaguicidas/toxicidad , Fotólisis , Espectrometría de Masas en Tándem , Vibrio , Contaminantes Químicos del Agua/toxicidad
18.
Water Res ; 171: 115393, 2020 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-31884378

RESUMEN

Often ingredients of personal care products are present in treated wastewaters, e. g grey water (GW), and are discharged into aquatic systems. Conventional treatment of GW does not fully eliminate micropollutants such as the UV filter substance 2-phenylbenzimidazole-5-sulfonic acid (PBSA). Photolysis has been proposed as an alternative treatment method for other micropollutants, but it is not clear yet whether it can also be used to eliminate PBSA. One goal of this study was to better understand the basic pathways involved in this process. It aimed to identify photo-transformation products (PTPs) by using, in the test conditions, an initial concentration of PBSA higher than those expected in the environment. The photolysis experiments were carried out using Xenon and UV lamps. Under Xenon irradiation only slight primary elimination was found. UV irradiation resulted in almost complete primary elimination of PBSA but not in full mineralization. Four isomeric mono-hydroxylated PTPs were identified by high resolution mass spectrometry (HRMS) which could be confirmed by other studies. A modified luminescent bacteria test (LBT) with Vibrio fischeri was employed to assess acute and chronic toxic effects of the irradiated photolytic mixtures. A strong correlation was found between the kinetics of two of the PTPs and luminescence inhibition indicating bacterial toxicity. Using a set of in silico quantitative structure-activity relationship (QSAR) models, this study also offered new insights concerning the environmental fate and toxicity of the TPs of PBSA as the TPs generated by UV-treatment are more persistent and partly more toxic than PBSA.


Asunto(s)
Contaminantes Químicos del Agua , Aliivibrio fischeri , Bencimidazoles , Fotólisis , Ácidos Sulfónicos , Rayos Ultravioleta
19.
J Hazard Mater ; 379: 120807, 2019 11 05.
Artículo en Inglés | MEDLINE | ID: mdl-31279308

RESUMEN

Antibiotic residues that reach the environment via land application of livestock manure could impact structure and function of microbial communities and promote the spread of antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARGs). To assess whether there is a risk, we have reviewed extensive data on five veterinary antibiotics (VAs) that are commonly used in livestock farming (amoxicillin, enrofloxacin, sulfadiazine, tetracycline, trimethoprim). Predicted environmental concentrations (PECs) after the medication of pigs were derived using (i) a total residue approach and (ii) the VetCalc model to account for additional fate parameters and regional scenarios specific to Germany. Predicted no effect concentrations (PNECs) for microbial toxicity and ARB selection were derived from available concentration-response data. Except for enrofloxacin, the total residue PECs exceeded 100 µg kg-1 in soil and risk quotients indicated a high risk for soil porewater and surface water (PEC/PNEC > 1). After PEC refinement, the risk in surface water was generally low. However, in soil porewater still a high risk was indicated for sulfadiazine, tetracycline, and trimethoprim that could persist up to 100 days after the manure application. These findings suggest an urgent need for regulatory action to mitigate the risk resulting from the presence of antibiotic residues in soil.


Asunto(s)
Antibacterianos/toxicidad , Residuos de Medicamentos/toxicidad , Farmacorresistencia Bacteriana , Estiércol , Contaminantes del Suelo/toxicidad , Drogas Veterinarias/toxicidad , Animales , Bacillus/efectos de los fármacos , Bacillus/genética , Cianobacterias/efectos de los fármacos , Cianobacterias/genética , Farmacorresistencia Bacteriana/efectos de los fármacos , Farmacorresistencia Bacteriana/genética , Unión Europea , Ganado , Estiércol/microbiología , Pruebas de Sensibilidad Microbiana , Pseudomonas/efectos de los fármacos , Pseudomonas/genética , Medición de Riesgo , Microbiología del Suelo
20.
Sci Total Environ ; 652: 836-850, 2019 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-30380490

RESUMEN

Pharmaceuticals and many other chemicals are an important basis for nearly all sectors including for example, food and agriculture, medicine, plastics, electronics, transport, communication, and many other products used nowadays. This comes along with a tremendous chemicalization of the globe, including ubiquitous presence of products of chemical and pharmaceutical industries in the aquatic environment. Use of these products will increase with population growth and living standard as will the need for clean water. In addition, climate change will exacerbate availability of water in sufficient quantity and quality. Since its implementation, conventional wastewater treatment has increasingly contributed to environmental protection and health of humans. However, with the increasing pollution of water by chemicals, conventional treatment turned out to be insufficient. It was also found that advanced effluent treatment methods such as extended filtration, the sorption to activated charcoal or advanced oxidation methods have their own limitations. These are, for example, increased demand for energy and hazardous chemicals, incomplete or even no removal of pollutants, the generation of unwanted products from parent compounds (transformation products, TPs) of often-unknown chemical structure, fate and toxicity. In many countries, effluent treatment is available only rarely if at all let alone advanced treatment. The past should teach us, that focusing only on technological approaches is not constructive for a sustainable water quality control. Therefore, in addition to conventional and advanced treatment optimization more emphasis on input prevention is urgently needed, including more and better control of what is present in the source water. Measures for input prevention are known for long. The main focus though has always been on the treatment, and measures taken at the source have gained only little attention so far. A more effective and efficient approach, however, would be to avoid pollution at the source, which would in turn allow more targeted treatment to meet treated water quality objectives globally. New developments within green and sustainable chemistry are offering new approaches that allow for input prevention and a more targeted treatment to succeed in pollution elimination in and at the source. To put this into practice, engineers, water scientists and chemists as well as microbiologists and scientists of other related disciplines need to cooperate more extensively than in the past. Applying principles such as the precautionary principle, or keeping water flows separate where possible will add to this. This implies not minimizing the efforts to improve wastewater treatment but to design effluents and chemicals in such a way that treatment systems and water environments can cope successfully with the challenge of micropollutants globally (Kümmerer et al., 2018). This paper therefore presents in its first part some of the limitations of effluent treatment in order to demonstrate the urgent need for minimizing water pollution at the source and, information on why source management is urgently needed to improve water quality and stimulate discussions how to protect water resources on a global level. Some principles of green and sustainable chemistry as well as other approaches, which are part of source management, are presented in the second part in order to stimulate discussion.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...