Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 10(1): 2471, 2020 02 12.
Artículo en Inglés | MEDLINE | ID: mdl-32051446

RESUMEN

Following disturbances, corals recolonize space through the process of recruitment consisting of the three phases of propagule supply, settlement, and post-settlement survival. Yet, each phase is influenced by biophysical factors, leading to recruitment success variability through space. To resolve the relative contributions of biophysical factors on coral recruitment, the recovery of a 150 km long coral reefs in Palau was investigated after severe typhoon disturbances. Overall, we found that benthic organisms had a relatively weak interactive influence on larval settlement rates at the scale of individual tiles, with negative effects mainly exerted from high wave exposure for Acropora corals. In contrast, juvenile coral densities were well predicted by biophysical drivers, through both direct and indirect pathways. High densities of Acropora and Poritidae juveniles were directly explained by the availability of substrata free from space competitors. Juvenile Montipora were found in higher densities where coralline algae coverage was high, which occurred at reefs with high wave exposure, while high densities of juvenile Pocilloporidae occurred on structurally complex reefs with high biomass of bioeroder fish. Our findings demonstrate that strengths of biophysical interactions were taxon-specific and had cascading effects on coral recruitment, which need consideration for predicting reef recovery and conservation strategies.


Asunto(s)
Biodiversidad , Cnidarios/fisiología , Arrecifes de Coral , Animales , Biomasa , Cnidarios/crecimiento & desarrollo , Tormentas Ciclónicas , Larva/fisiología
2.
Proc Biol Sci ; 286(1897): 20182908, 2019 02 27.
Artículo en Inglés | MEDLINE | ID: mdl-30963834

RESUMEN

Understanding processes that drive community recovery are needed to predict ecosystem trajectories and manage for impacts under increasing global threats. Yet, the quantification of community recovery in coral reefs has been challenging owing to a paucity of long-term ecological data and high frequency of disturbances. Here we investigate community re-assembly and the bio-physical drivers that determine the capacity of coral reefs to recover following the 1998 bleaching event, using long-term monitoring data across four habitats in Palau. Our study documents that the time needed for coral reefs to recover from bleaching disturbance to coral-dominated state in disturbance-free regimes is at least 9-12 years. Importantly, we show that reefs in two habitats achieve relative stability to a climax community state within that time frame. We then investigated the direct and indirect effects of drivers on the rate of recovery of four dominant coral groups using a structural equation modelling approach. While the rates of recovery differed among coral groups, we found that larval connectivity and juvenile coral density were prominent drivers of recovery for fast growing Acropora but not for the other three groups. Competitive algae and parrotfish had negative and positive effects on coral recovery in general, whereas wave exposure had variable effects related to coral morphology. Overall, the time needed for community re-assembly is habitat specific and drivers of recovery are taxa specific, considerations that require incorporation into planning for ecosystem management under climate change.


Asunto(s)
Antozoos/fisiología , Biodiversidad , Cambio Climático , Arrecifes de Coral , Animales , Antozoos/crecimiento & desarrollo , Larva/crecimiento & desarrollo , Larva/fisiología , Palau
3.
PLoS One ; 12(3): e0174787, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28358910

RESUMEN

Palau has a rich heritage of conservation that has evolved from the traditional moratoria on fishing, or "bul", to more western Marine Protected Areas (MPAs), while still retaining elements of customary management and tenure. In 2003, the Palau Protected Areas Network (PAN) was created to conserve Palau's unique biodiversity and culture, and is the country's mechanism for achieving the goals of the Micronesia Challenge (MC), an initiative to conserve ≥30% of near-shore marine resources within the region by 2020. The PAN comprises a network of numerous MPAs within Palau that vary in age, size, level of management, and habitat, which provide an excellent opportunity to test hypotheses concerning MPA design and function using multiple discreet sampling units. Our sampling design provided a robust space for time comparison to evaluate the relative influence of potential drivers of MPA efficacy. Our results showed that no-take MPAs had, on average, nearly twice the biomass of resource fishes (i.e. those important commercially, culturally, or for subsistence) compared to nearby unprotected areas. Biomass of non-resource fishes showed no differences between no-take areas and areas open to fishing. The most striking difference between no-take MPAs and unprotected areas was the more than 5-fold greater biomass of piscivorous fishes in the MPAs compared to fished areas. The most important determinates of no-take MPA success in conserving resource fish biomass were MPA size and years of protection. Habitat and distance from shore had little effect on resource fish biomass. The extensive network of MPAs in Palau likely provides important conservation and tourism benefits to the Republic, and may also provide fisheries benefits by protecting spawning aggregation sites, and potentially through adult spillover.


Asunto(s)
Ecosistema , Animales , Monitoreo del Ambiente , Peces , Análisis de Componente Principal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...