Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Agrosyst Geosci Environ ; 6(3): 1-18, 2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-38268614

RESUMEN

To provide recommendations for establishment of plants on low-pH Formosa Mine tailings, two greenhouse experiments were conducted to evaluate the use of remedial amendments to improve the survival and growth of Douglas fir (Pseudotsuga menziesii) seedlings. A preliminary experiment indicated that 1% lime (by weight) raised tailings pH, permitting seedling survival. However, high rates of biosolid application (BS; 2% by weight) added to supply nutrients were phytotoxic when added with lime. A gasified conifer biochar (BC) added to tailings at 1%, 2.5%, or 5% (by weight), along with lime and BS, caused an additional increase in pH, decreased electrical conductivity (EC), and tended to increase the survival of Douglas fir. The addition of a locally sourced microbial inoculum (LSM) did not affect survival. A subsequent experiment expanded our experimental design by testing multiple levels of amendments that included lime (0.5% and 1% by weight), three application rates (0.2%, 0.5%, and 2%) of two nutrient sources (BS or mineral fertilizer), BC (0% and 2.5%), and with or without LSM. There were many interactions among amendments. In general, Douglas fir survival was enhanced when lime and BC were added. These experiments suggest that amending with lime, a nutrient source, and BC would enhance revegetation on low-pH, metal-contaminated mine tailings.

2.
HortScience ; 55(2): 261-271, 2020 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-32296248

RESUMEN

Essential nutrient concentrations in crops can affect human health. While biochar has the potential as a soil amendment to improve crop yields, it may also affect the concentrations of nutrients such as Ca, Fe, K, Mg, Mn, and Zn in edible portions of crops. To better characterize effects of biochar on important human nutrients in food crops, we evaluated the effects of biochar on lettuce (Lactuca sativa L. cv. Black-Seeded Simpson) leaf and carrot [Daucus carota subsp. sativus (Hoffm.) Schübl. cv. Tendersweet] developing taproot nutrients. Plants were grown in pots in a greenhouse using sandy loam (Coxville, fine, kaolinitic, thermic Typic Paleaquults) and loamy sand (Norfolk, fine-loamy, kaolinitic, thermic Typic Kandiudults,) series soils, amended with biochar produced from four feedstocks: pine chips (PC), poultry litter (PL), swine solids (SS), and switchgrass (SG); and two blends of PC plus PL [Pc/PL, 50%/50% (55) and 80%/20% (82) by weight]. Biochar was produced at 350, 500, and 700 °C from each feedstock. Lettuce leaf and carrot taproot total nutrient concentrations were determined by inductively coupled plasma analysis. Biochar (especially at least in part manure-based, i.e., PL, SS, 55, and 82 at nearly all temperatures) primarily decreased nutrient concentrations in lettuce leaves, with Ca, Mg, and Zn affected most. Carrot taproot nutrient concentrations also deceased, but to a lesser extent. Some biochars increased leaf or taproot nutrient concentrations, especially K. This study indicated that biochar can both decrease and increase leaf and taproot nutrient concentrations important for human health. Thus, potential effects on nutrients in plants should be carefully considered when biochar is used as a soil amendment with vegetable crops.

3.
Ecol Eng ; 140: 1-105589, 2019 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-32020990

RESUMEN

One of the primary functions of green roofs in urban areas is to moderate rainwater runoff, and one of the major impediments to the survival of plants on an extensive green roof (EGR) is a lack of available water during dry periods. Runoff moderation and water storage are both influenced by the composition of the growing media. Here we present a framework for evaluating the hydrologic performance of EGR growing media and also provide hydrologic attribute data for several commonly used EGR media constituents. In this three-phase study, we: 1) measured hydrologic attributes of individual EGR media constituents, 2) predicted attributes of media mixtures using individual constituent data, and 3) tested the seven top-ranking mixtures to evaluate hydrologic performance. Hydrologic attributes included wet weight and water held at maximum retentive capacity, long-term water retention, and hydraulic conductivity. Because perlite was light in weight yet held the greatest amount of water both at its maximum retentive capacity and in the long term, media mixtures dominated by perlite were predicted to have the best overall hydrologic performance. Mixtures dominated by pumice were also predicted to perform relatively well but were heavier. Despite the slightly greater weight and slightly lower performance, pumice may be a preferred alternative to perlite because perlite is a processed constituent with greater estimated embodied energy. Results indicate that performance of mixtures can be adequately predicted using performance of individual constituents for wet weight, water held, and long-term water retention. Hydraulic conductivity was less predictable because the pore volume in mixtures can be unrelated to the pore volume of the individual constituents. The framework presented here can be used to evaluate the performance of other EGR media, and the media attribute data can be used in formulating EGR media mixtures for specific applications. In addition, the attribute data can serve as a benchmark for evaluating other EGR media. Our results underscore the need for standardization of methods for more effective comparisons of EGR substrates, and also reinforce the need to evaluate EGR components using real-world scenarios.

4.
Commun Soil Sci Plant Anal ; 49(16): 2025-2041, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30930464

RESUMEN

We developed a rapid-test to screen for effects of biochar on seed germina- tion and soils. Crop seeds were placed in containers and covered with 15 g of soil with 1% biochar by weight. Two agricultural soils from South Carolina USA were used. Eighteen biochars were produced from six primary feedstocks [pine chips (PC), poultry litter (PL), swine solids (SS), switchgrass (SG); and two blends of PC and PL, 50% PC/50% PL (55), and 80% PC/20% PL (82)]. Each feedstock was pyrolyzed at 350, 500 and 700°C. There were few biochar effects on seed germination. Shoot dry weight was increased for carrot, cucumber, lettuce, oat, and tomato; primarily with biochars containing PL. Soil pH, electrical conductivity and extractable phosphorus primarily increased with PL, SS, 55, and 82 treatments for both soil types and across species. This method can be an early indicator of biochar effects on seed germination and soil health.

5.
Plant Mol Biol ; 72(4-5): 545-56, 2010 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-20043233

RESUMEN

In this study, genome-wide expression profiling based on Affymetrix ATH1 arrays was used to identify discriminating responses of Arabidopsis thaliana to five herbicides, which contain active ingredients targeting two different branches of amino acid biosynthesis. One herbicide contained glyphosate, which targets 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS), while the other four herbicides contain different acetolactate synthase (ALS) inhibiting compounds. In contrast to the herbicide containing glyphosate, which affected only a few transcripts, many effects of the ALS inhibiting herbicides were revealed based on transcriptional changes related to ribosome biogenesis and translation, secondary metabolism, cell wall modification and growth. The expression pattern of a set of 101 genes provided a specific, composite signature that was distinct from other major stress responses and differentiated among herbicides targeting the same enzyme (ALS) or containing the same chemical class of active ingredient (sulfonylurea). A set of homologous genes could be identified in Brassica napus that exhibited a similar expression pattern and correctly distinguished exposure to the five herbicides. Our results show the ability of a limited number of genes to classify and differentiate responses to closely related herbicides in A. thaliana and B. napus and the transferability of a complex transcriptional signature across species.


Asunto(s)
Arabidopsis/efectos de los fármacos , Arabidopsis/genética , Brassica napus/efectos de los fármacos , Brassica napus/genética , Herbicidas/farmacología , 3-Fosfoshikimato 1-Carboxiviniltransferasa/antagonistas & inhibidores , Acetolactato Sintasa/antagonistas & inhibidores , Aminoácidos/biosíntesis , Arabidopsis/metabolismo , Brassica napus/metabolismo , Perfilación de la Expresión Génica , Genes de Plantas/efectos de los fármacos , Especificidad de la Especie
6.
Tree Physiol ; 29(11): 1381-93, 2009 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-19748912

RESUMEN

Evapotranspiration (ET) is driven by evaporative demand, available solar energy and soil moisture (SM) as well as by plant physiological activity which may be substantially affected by elevated CO2 and O3. A multi-year study was conducted in outdoor sunlit-controlled environment mesocosm containing ponderosa pine seedlings growing in a reconstructed soil-litter system. The study used a 2 x 2 factorial design with two concentrations of CO2 (ambient and elevated), two levels of O3 (low and high) and three replicates of each treatment. The objective of this study was to assess the effects of chronic exposure to elevated CO2 and O3, alone and in combination, on daily ET. This study evaluated three hypotheses: (i) because elevated CO2 stimulates stomatal closure, O3 effects on ET will be less under elevated CO2 than under ambient CO2; (ii) elevated CO2 will ameliorate the long-term effects of O3 on ET; and (iii) because conductance (g) decreases with decreasing SM, the impacts of elevated CO2 and O3, alone and in combination, on water loss via g will be greater in early summer when SM is not limiting than to other times of the year. A mixed-model covariance analysis was used to adjust the daily ET for seasonality and the effects of SM and photosynthetically active radiation when testing for the effects of CO2 and O3 on ET via the vapor pressure deficit gradient. The empirical results indicated that the interactive stresses of elevated CO2 and O3 resulted in a lesser reduction in ET via reduced canopy conductance than the sum of the individual effects of each gas. CO2-induced reductions in ET were more pronounced when trees were physiologically most active. O3-induced reductions in ET under ambient CO2 were likely transpirational changes via reduced conductance because needle area and root biomass were not affected by exposures to elevated O3 in this study.


Asunto(s)
Pinus ponderosa/efectos de los fármacos , Estaciones del Año , Suelo , Agua/metabolismo , Transporte Biológico/efectos de los fármacos , Clima , Pinus ponderosa/metabolismo , Pinus ponderosa/fisiología , Transpiración de Plantas
7.
Plant Cell Environ ; 30(11): 1400-10, 2007 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-17897410

RESUMEN

We investigated the effects of elevated CO(2) (EC) [ambient CO(2) (AC) + 190 ppm] and elevated temperature (ET) [ambient temperature (AT) + 3.6 degrees C] on net ecosystem exchange (NEE) of seedling Douglas fir (Pseudotsuga menziesii) mesocosms. As the study utilized seedlings in reconstructed soil-litter-plant systems, we anticipated greater C losses through ecosystem respiration (R(e)) than gains through gross photosynthesis (GPP), i.e. negative NEE. We hypothesized that: (1) EC would increase GPP more than R(e), resulting in NEE being less negative; and (2) ET would increase R(e) more than GPP, resulting in NEE being more negative. We also evaluated effects of CO(2) and temperature on light inhibition of dark respiration. Consistent with our hypothesis, NEE was a smaller C source in EC, not because EC increased photosynthesis but rather because of decreased respiration resulting in less C loss. Consistent with our hypothesis, NEE was more negative in ET because R(e) increased more than GPP. The light level that inhibited respiration varied seasonally with little difference among CO(2) and temperature treatments. In contrast, the degree of light inhibition of respiration was greater in AC than EC. In our system, respiration was the primary control on NEE, as EC and ET caused greater changes in respiration than photosynthesis.


Asunto(s)
Dióxido de Carbono/metabolismo , Carbono/metabolismo , Ecosistema , Calor , Pseudotsuga/metabolismo , Dióxido de Carbono/química , Consumo de Oxígeno , Transpiración de Plantas , Plantones , Factores de Tiempo
8.
Physiol Plant ; 117(3): 352-358, 2003 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-12654035

RESUMEN

Monoterpene levels in current year needles of Douglas fir (Pseudotsuga menziesii (Mirb.) Franco) seedlings were measured at the end of 4 years of exposure to ambient or elevated CO2 (+179 micro mol mol-1), and ambient or elevated temperature (+0.3.5;C). Eleven monoterpenes were identified and quantified using gas chromatography/flame ionization detector/mass spectroscopy, with eight of these compounds regularly occurring in all trees examined. Elevated CO2 exposure significantly reduced the levels for four of the eight main compounds in needles. Total monoterpene production was reduced by 52% (P < 0.05). Elevated temperature also reduced monoterpene levels (P < 0.07). The combination of elevated temperature and elevated CO2 resulted in a 64% reduction in total monoterpenes compared with needles on ambient temperature trees. Two-way anova showed no significant temperature-CO2 interaction. It is hypothesized that seasonal reductions in needle monoterpene pools under elevated CO2 and temperature conditions may be due to a combination of competing carbon sinks, including increased carbon flux through the roots.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...