Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38645011

RESUMEN

Rubisco is the primary CO2 fixing enzyme of the biosphere yet has slow kinetics. The roles of evolution and chemical mechanism in constraining the sequence landscape of rubisco remain debated. In order to map sequence to function, we developed a massively parallel assay for rubisco using an engineered E. coli where enzyme function is coupled to growth. By assaying >99% of single amino acid mutants across CO2 concentrations, we inferred enzyme velocity and CO2 affinity for thousands of substitutions. We identified many highly conserved positions that tolerate mutation and rare mutations that improve CO2 affinity. These data suggest that non-trivial kinetic improvements are readily accessible and provide a comprehensive sequence-to-function mapping for enzyme engineering efforts.

2.
Microbiome ; 12(1): 15, 2024 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-38273328

RESUMEN

BACKGROUND: Biofilms in sulfide-rich springs present intricate microbial communities that play pivotal roles in biogeochemical cycling. We studied chemoautotrophically based biofilms that host diverse CPR bacteria and grow in sulfide-rich springs to investigate microbial controls on biogeochemical cycling. RESULTS: Sulfide springs biofilms were investigated using bulk geochemical analysis, genome-resolved metagenomics, and scanning transmission X-ray microscopy (STXM) at room temperature and 87 K. Chemolithotrophic sulfur-oxidizing bacteria, including Thiothrix and Beggiatoa, dominate the biofilms, which also contain CPR Gracilibacteria, Absconditabacteria, Saccharibacteria, Peregrinibacteria, Berkelbacteria, Microgenomates, and Parcubacteria. STXM imaging revealed ultra-small cells near the surfaces of filamentous bacteria that may be CPR bacterial episymbionts. STXM and NEXAFS spectroscopy at carbon K and sulfur L2,3 edges show that filamentous bacteria contain protein-encapsulated spherical elemental sulfur granules, indicating that they are sulfur oxidizers, likely Thiothrix. Berkelbacteria and Moranbacteria in the same biofilm sample are predicted to have a novel electron bifurcating group 3b [NiFe]-hydrogenase, putatively a sulfhydrogenase, potentially linked to sulfur metabolism via redox cofactors. This complex could potentially contribute to symbioses, for example, with sulfur-oxidizing bacteria such as Thiothrix that is based on cryptic sulfur cycling. One Doudnabacteria genome encodes adjacent sulfur dioxygenase and rhodanese genes that may convert thiosulfate to sulfite. We find similar conserved genomic architecture associated with CPR bacteria from other sulfur-rich subsurface ecosystems. CONCLUSIONS: Our combined metagenomic, geochemical, spectromicroscopic, and structural bioinformatics analyses of biofilms growing in sulfide-rich springs revealed consortia that contain CPR bacteria and sulfur-oxidizing Proteobacteria, including Thiothrix, and bacteria from a new family within Beggiatoales. We infer roles for CPR bacteria in sulfur and hydrogen cycling. Video Abstract.


Asunto(s)
Ecosistema , Agua Subterránea , Bacterias/genética , Bacterias/metabolismo , Sulfuros/metabolismo , Oxidación-Reducción , Agua Subterránea/microbiología , Azufre/metabolismo , Biopelículas , Hidrógeno/metabolismo , Filogenia
3.
Biochemistry ; 63(2): 219-229, 2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-38085650

RESUMEN

Carboxysomes are protein microcompartments that function in the bacterial CO2 concentrating mechanism (CCM) to facilitate CO2 assimilation. To do so, carboxysomes assemble from thousands of constituent proteins into an icosahedral shell, which encapsulates the enzymes Rubisco and carbonic anhydrase to form structures typically > 100 nm and > 300 megadaltons. Although many of the protein interactions driving the assembly process have been determined, it remains unknown how size and composition are precisely controlled. Here, we show that the size of α-carboxysomes is controlled by the disordered scaffolding protein CsoS2. CsoS2 contains two classes of related peptide repeats that bind to the shell in a distinct fashion, and our data indicate that size is controlled by the relative number of these interactions. We propose an energetic and structural model wherein the two repeat classes bind at the junction of shell hexamers but differ in their preferences for the shell contact angles, and thus the local curvature. In total, this model suggests that a set of specific and repeated interactions between CsoS2 and shell proteins collectively achieve the large size and monodispersity of α-carboxysomes.


Asunto(s)
Proteínas Bacterianas , Anhidrasas Carbónicas , Proteínas Bacterianas/química , Dióxido de Carbono/metabolismo , Ribulosa-Bifosfato Carboxilasa/metabolismo , Péptidos/metabolismo , Anhidrasas Carbónicas/metabolismo , Orgánulos/metabolismo
4.
Proc Natl Acad Sci U S A ; 119(49): e2210539119, 2022 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-36454757

RESUMEN

Cyanobacteria rely on CO2-concentrating mechanisms (CCMs) to grow in today's atmosphere (0.04% CO2). These complex physiological adaptations require ≈15 genes to produce two types of protein complexes: inorganic carbon (Ci) transporters and 100+ nm carboxysome compartments that encapsulate rubisco with a carbonic anhydrase (CA) enzyme. Mutations disrupting any of these genes prohibit growth in ambient air. If any plausible ancestral form-i.e., lacking a single gene-cannot grow, how did the CCM evolve? Here, we test the hypothesis that evolution of the bacterial CCM was "catalyzed" by historically high CO2 levels that decreased over geologic time. Using an E. coli reconstitution of a bacterial CCM, we constructed strains lacking one or more CCM components and evaluated their growth across CO2 concentrations. We expected these experiments to demonstrate the importance of the carboxysome. Instead, we found that partial CCMs expressing CA or Ci uptake genes grew better than controls in intermediate CO2 levels (≈1%) and observed similar phenotypes in two autotrophic bacteria, Halothiobacillus neapolitanus and Cupriavidus necator. To understand how CA and Ci uptake improve growth, we model autotrophy as colimited by CO2 and HCO3-, as both are required to produce biomass. Our experiments and model delineated a viable trajectory for CCM evolution where decreasing atmospheric CO2 induces an HCO3- deficiency that is alleviated by acquisition of CA or Ci uptake, thereby enabling the emergence of a modern CCM. This work underscores the importance of considering physiology and environmental context when studying the evolution of biological complexity.


Asunto(s)
Dióxido de Carbono , Anhidrasas Carbónicas , Escherichia coli/genética , Bacterias , Transporte Biológico , Anhidrasas Carbónicas/genética
5.
J Phys Chem B ; 126(43): 8747-8759, 2022 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-36282790

RESUMEN

Carboxysomes are self-assembled bacterial microcompartments that facilitate carbon assimilation by colocalizing the enzymes of CO2 fixation within a protein shell. These microcompartments can be highly heterogeneous in their composition and filling, so measuring the mass and loading of an individual carboxysome would allow for better characterization of its assembly and function. To enable detailed and extended characterizations of single nanoparticles in solution, we recently demonstrated an improved interferometric scattering anti-Brownian electrokinetic (ISABEL) trap, which tracks the position of a single nanoparticle via its scattering of a near-infrared beam and applies feedback to counteract its Brownian motion. Importantly, the scattering signal can be related to the mass of nanoscale proteinaceous objects, whose refractive indices are well-characterized. We calibrate single-particle scattering cross-section measurements in the ISABEL trap and determine individual carboxysome masses in the 50-400 MDa range by analyzing their scattering cross sections with a core-shell model. We further investigate carboxysome loading by combining mass measurements with simultaneous fluorescence reporting from labeled internal components. This method may be extended to other biological objects, such as viruses or extracellular vesicles, and can be combined with orthogonal fluorescence reporters to achieve precise physical and chemical characterization of individual nanoscale biological objects.


Asunto(s)
Interferometría , Orgánulos , Orgánulos/metabolismo , Dióxido de Carbono/metabolismo , Carbono , Movimiento (Física) , Proteínas Bacterianas/metabolismo
6.
Nat Commun ; 13(1): 4863, 2022 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-35982043

RESUMEN

Despite the importance of microcompartments in prokaryotic biology and bioengineering, structural heterogeneity has prevented a complete understanding of their architecture, ultrastructure, and spatial organization. Here, we employ cryo-electron tomography to image α-carboxysomes, a pseudo-icosahedral microcompartment responsible for carbon fixation. We have solved a high-resolution subtomogram average of the Rubisco cargo inside the carboxysome, and determined the arrangement of the enzyme. We find that the H. neapolitanus Rubisco polymerizes in vivo, mediated by the small Rubisco subunit. These fibrils can further pack to form a lattice with six-fold pseudo-symmetry. This arrangement preserves freedom of motion and accessibility around the Rubisco active site and the binding sites for two other carboxysome proteins, CsoSCA (a carbonic anhydrase) and the disordered CsoS2, even at Rubisco concentrations exceeding 800 µM. This characterization of Rubisco cargo inside the α-carboxysome provides insight into the balance between order and disorder in microcompartment organization.


Asunto(s)
Anhidrasas Carbónicas , Ribulosa-Bifosfato Carboxilasa , Proteínas Bacterianas/metabolismo , Ciclo del Carbono , Dióxido de Carbono/metabolismo , Anhidrasas Carbónicas/metabolismo , Dominio Catalítico , Orgánulos/metabolismo , Ribulosa-Bifosfato Carboxilasa/metabolismo
7.
J Phys Chem Lett ; 13(20): 4455-4462, 2022 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-35549289

RESUMEN

Diffusion of biological nanoparticles in solution impedes our ability to continuously monitor individual particles and measure their physical and chemical properties. To overcome this, we previously developed the interferometric scattering anti-Brownian electrokinetic (ISABEL) trap, which uses scattering to localize a particle and applies electrokinetic forces that counteract Brownian motion, thus enabling extended observation. Here we present an improved ISABEL trap that incorporates a near-infrared scatter illumination beam and rapidly interleaves 405 and 488 nm fluorescence excitation reporter beams. With the ISABEL trap, we monitored the internal redox environment of individual carboxysomes labeled with the ratiometric redox reporter roGFP2. Carboxysomes widely vary in scattering contrast (reporting on size) and redox-dependent ratiometric fluorescence. Furthermore, we used redox sensing to explore the chemical kinetics within intact carboxysomes, where bulk measurements may contain unwanted contributions from aggregates or interfering fluorescent proteins. Overall, we demonstrate the ISABEL trap's ability to sensitively monitor nanoscale biological objects, enabling new experiments on these systems.


Asunto(s)
Nanopartículas , Difusión , Fluorescencia , Movimiento (Física) , Oxidación-Reducción
8.
Sci Rep ; 11(1): 22810, 2021 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-34815415

RESUMEN

Bacterial nanocompartments, also known as encapsulins, are an emerging class of protein-based 'organelles' found in bacteria and archaea. Encapsulins are virus-like icosahedral particles comprising a ~ 25-50 nm shell surrounding a specific cargo enzyme. Compartmentalization is thought to create a unique chemical environment to facilitate catalysis and isolate toxic intermediates. Many questions regarding nanocompartment structure-function remain unanswered, including how shell symmetry dictates cargo loading and to what extent the shell facilitates enzymatic activity. Here, we explore these questions using the model Thermotoga maritima nanocompartment known to encapsulate a redox-active ferritin-like protein. Biochemical analysis revealed the encapsulin shell to possess a flavin binding site located at the interface between capsomere subunits, suggesting the shell may play a direct and active role in the function of the encapsulated cargo. Furthermore, we used cryo-EM to show that cargo proteins use a form of symmetry-matching to facilitate encapsulation and define stoichiometry. In the case of the Thermotoga maritima encapsulin, the decameric cargo protein with fivefold symmetry preferentially binds to the pentameric-axis of the icosahedral shell. Taken together, these observations suggest the shell is not simply a passive barrier-it also plays a significant role in the structure and function of the cargo enzyme.


Asunto(s)
Proteínas Bacterianas/metabolismo , Dinitrocresoles/metabolismo , Ferritinas/metabolismo , Flavoproteínas/metabolismo , Hierro/metabolismo , Thermotoga maritima/metabolismo , Proteínas Bacterianas/genética , Microscopía por Crioelectrón , Ferritinas/química , Ferritinas/genética , Flavoproteínas/genética , Modelos Moleculares , Thermotoga maritima/genética
9.
Elife ; 102021 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-33821786

RESUMEN

Prokaryotic nanocompartments, also known as encapsulins, are a recently discovered proteinaceous organelle-like compartment in prokaryotes that compartmentalize cargo enzymes. While initial studies have begun to elucidate the structure and physiological roles of encapsulins, bioinformatic evidence suggests that a great diversity of encapsulin nanocompartments remains unexplored. Here, we describe a novel encapsulin in the freshwater cyanobacterium Synechococcus elongatus PCC 7942. This nanocompartment is upregulated upon sulfate starvation and encapsulates a cysteine desulfurase enzyme via an N-terminal targeting sequence. Using cryo-electron microscopy, we have determined the structure of the nanocompartment complex to 2.2 Å resolution. Lastly, biochemical characterization of the complex demonstrated that the activity of the cysteine desulfurase is enhanced upon encapsulation. Taken together, our discovery, structural analysis, and enzymatic characterization of this prokaryotic nanocompartment provide a foundation for future studies seeking to understand the physiological role of this encapsulin in various bacteria.


Asunto(s)
Proteínas Bacterianas/genética , Azufre/metabolismo , Synechococcus/genética , Proteínas Bacterianas/metabolismo , Microscopía por Crioelectrón , Synechococcus/metabolismo
10.
Nat Struct Mol Biol ; 27(3): 281-287, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32123388

RESUMEN

Carboxysomes are bacterial microcompartments that function as the centerpiece of the bacterial CO2-concentrating mechanism by facilitating high CO2 concentrations near the carboxylase Rubisco. The carboxysome self-assembles from thousands of individual proteins into icosahedral-like particles with a dense enzyme cargo encapsulated within a proteinaceous shell. In the case of the α-carboxysome, there is little molecular insight into protein-protein interactions that drive the assembly process. Here, studies on the α-carboxysome from Halothiobacillus neapolitanus demonstrate that Rubisco interacts with the N terminus of CsoS2, a multivalent, intrinsically disordered protein. X-ray structural analysis of the CsoS2 interaction motif bound to Rubisco reveals a series of conserved electrostatic interactions that are only made with properly assembled hexadecameric Rubisco. Although biophysical measurements indicate that this single interaction is weak, its implicit multivalency induces high-affinity binding through avidity. Taken together, our results indicate that CsoS2 acts as an interaction hub to condense Rubisco and enable efficient α-carboxysome formation.


Asunto(s)
Proteínas Bacterianas/química , Halothiobacillus/química , Proteínas Intrínsecamente Desordenadas/química , Orgánulos/química , Ribulosa-Bifosfato Carboxilasa/química , Secuencia de Aminoácidos , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Sitios de Unión , Ciclo del Carbono/fisiología , Clonación Molecular , Cristalografía por Rayos X , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Vectores Genéticos/química , Vectores Genéticos/metabolismo , Halothiobacillus/genética , Halothiobacillus/metabolismo , Proteínas Intrínsecamente Desordenadas/genética , Proteínas Intrínsecamente Desordenadas/metabolismo , Modelos Moleculares , Orgánulos/metabolismo , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , Multimerización de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Ribulosa-Bifosfato Carboxilasa/genética , Ribulosa-Bifosfato Carboxilasa/metabolismo , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Electricidad Estática
11.
J Am Chem Soc ; 141(38): 15250-15265, 2019 09 25.
Artículo en Inglés | MEDLINE | ID: mdl-31450887

RESUMEN

Green fluorescent proteins (GFPs) have become indispensable imaging and optogenetic tools. Their absorption and emission properties can be optimized for specific applications. Currently, no unified framework exists to comprehensively describe these photophysical properties, namely the absorption maxima, emission maxima, Stokes shifts, vibronic progressions, extinction coefficients, Stark tuning rates, and spontaneous emission rates, especially one that includes the effects of the protein environment. In this work, we study the correlations among these properties from systematically tuned GFP environmental mutants and chromophore variants. Correlation plots reveal monotonic trends, suggesting that all these properties are governed by one underlying factor dependent on the chromophore's environment. By treating the anionic GFP chromophore as a mixed-valence compound existing as a superposition of two resonance forms, we argue that this underlying factor is defined as the difference in energy between the two forms, or the driving force, which is tuned by the environment. We then introduce a Marcus-Hush model with the bond length alternation vibrational mode, treating the GFP absorption band as an intervalence charge transfer band. This model explains all of the observed strong correlations among photophysical properties; related subtopics are extensively discussed in the Supporting Information. Finally, we demonstrate the model's predictive power by utilizing the additivity of the driving force. The model described here elucidates the role of the protein environment in modulating the photophysical properties of the chromophore, providing insights and limitations for designing new GFPs with desired phenotypes. We argue that this model should also be generally applicable to both biological and nonbiological polymethine dyes.


Asunto(s)
Proteínas Fluorescentes Verdes/química , Proteínas Fluorescentes Verdes/genética , Modelos Moleculares , Estructura Molecular , Mutación , Óptica y Fotónica , Procesos Fotoquímicos
12.
Nat Microbiol ; 4(12): 2204-2215, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31406332

RESUMEN

Bacterial autotrophs often rely on CO2 concentrating mechanisms (CCMs) to assimilate carbon. Although many CCM proteins have been identified, a systematic screen of the components of CCMs is lacking. Here, we performed a genome-wide barcoded transposon screen to identify essential and CCM-related genes in the γ-proteobacterium Halothiobacillus neapolitanus. Screening revealed that the CCM comprises at least 17 and probably no more than 25 genes, most of which are encoded in 3 operons. Two of these operons (DAB1 and DAB2) contain a two-gene locus that encodes a domain of unknown function (Pfam: PF10070) and a putative cation transporter (Pfam: PF00361). Physiological and biochemical assays demonstrated that these proteins-which we name DabA and DabB, for DABs accumulate bicarbonate-assemble into a heterodimeric complex, which contains a putative ß-carbonic anhydrase-like active site and functions as an energy-coupled inorganic carbon (Ci) pump. Interestingly, DAB operons are found in a diverse range of bacteria and archaea. We demonstrate that functional DABs are present in the human pathogens Bacillus anthracis and Vibrio cholerae. On the basis of these results, we propose that DABs constitute a class of energized Ci pumps and play a critical role in the metabolism of Ci throughout prokaryotic phyla.


Asunto(s)
Proteínas Bacterianas/metabolismo , Carbono/metabolismo , Anhidrasas Carbónicas/metabolismo , Proteínas Portadoras/metabolismo , Células Procariotas/metabolismo , Archaea/enzimología , Archaea/genética , Archaea/metabolismo , Bacillus anthracis/metabolismo , Bacterias/enzimología , Bacterias/genética , Bacterias/metabolismo , Proteínas Bacterianas/genética , Dióxido de Carbono/metabolismo , Anhidrasas Carbónicas/genética , Elementos Transponibles de ADN/genética , Compuestos de Diazonio , Genes Bacterianos/genética , Genes Esenciales , Halothiobacillus/genética , Halothiobacillus/metabolismo , Mutagénesis , Operón , Ácidos Sulfanílicos , Vibrio cholerae/metabolismo
13.
Biochemistry ; 58(31): 3365-3376, 2019 08 06.
Artículo en Inglés | MEDLINE | ID: mdl-31259528

RESUMEN

Rubisco is the primary carboxylase of the Calvin cycle, the most abundant enzyme in the biosphere, and one of the best-characterized enzymes. On the basis of correlations between Rubisco kinetic parameters, it is widely posited that constraints embedded in the catalytic mechanism enforce trade-offs between CO2 specificity, SC/O, and maximum carboxylation rate, kcat,C. However, the reasoning that established this view was based on data from ≈20 organisms. Here, we re-examine models of trade-offs in Rubisco catalysis using a data set from ≈300 organisms. Correlations between kinetic parameters are substantially attenuated in this larger data set, with the inverse relationship between kcat,C and SC/O being a key example. Nonetheless, measured kinetic parameters display extremely limited variation, consistent with a view of Rubisco as a highly constrained enzyme. More than 95% of kcat,C values are between 1 and 10 s-1, and no measured kcat,C exceeds 15 s-1. Similarly, SC/O varies by only 30% among Form I Rubiscos and <10% among C3 plant enzymes. Limited variation in SC/O forces a strong positive correlation between the catalytic efficiencies (kcat/KM) for carboxylation and oxygenation, consistent with a model of Rubisco catalysis in which increasing the rate of addition of CO2 to the enzyme-substrate complex requires an equal increase in the O2 addition rate. Altogether, these data suggest that Rubisco evolution is tightly constrained by the physicochemical limits of CO2/O2 discrimination.


Asunto(s)
Modelos Biológicos , Ribulosa-Bifosfato Carboxilasa/metabolismo , Dióxido de Carbono/metabolismo , Cinética , Oxígeno/metabolismo , Termodinámica
14.
Anal Chem ; 91(11): 7458-7465, 2019 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-31082222

RESUMEN

Applications of charge detection mass spectrometry (CDMS) for measuring the masses of large molecules, macromolecular complexes, and synthetic polymers that are too large or heterogeneous for conventional mass spectrometry measurements are made possible by weighing individual ions in order to avoid interferences between ions. Here, a new multiplexing method that makes it possible to measure the masses of many ions simultaneously in CDMS is demonstrated. Ions with a broad range of kinetic energies are trapped. The energy of each ion is obtained from the ratio of the intensity of the fundamental to the second harmonic frequencies of the periodic trapping motion making it possible to measure both the m/ z and charge of each ion. Because ions with the exact same m/ z but with different energies appear at different frequencies, the probability of ion-ion interference is significantly reduced. We show that the measured mass of a protein complex consisting of 16 protomers, RuBisCO (517 kDa), is not affected by the number of trapped ions with up to 21 ions trapped simultaneously in these experiments. Ion-ion interactions do not affect the ion trapping lifetime up to 1 s, and there is no influence of the number of ions on the measured charge-state distribution of bovine serum albumin (66.5 kDa), indicating that ion-ion interactions do not adversely affect any of these measurements. Over an order of magnitude gain in measurement speed over single ion analysis is demonstrated, and significant additional gains are expected with this multi-ion measurement method.

16.
Nat Commun ; 8(1): 431, 2017 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-28874729

RESUMEN

Sensitivity, dynamic and detection range as well as exclusion of expression and instrumental artifacts are critical for the quantitation of data obtained with fluorescent protein (FP)-based biosensors in vivo. Current biosensors designs are, in general, unable to simultaneously meet all these criteria. Here, we describe a generalizable platform to create dual-FP biosensors with large dynamic ranges by employing a single FP-cassette, named GO-(Green-Orange) Matryoshka. The cassette nests a stable reference FP (large Stokes shift LSSmOrange) within a reporter FP (circularly permuted green FP). GO- Matryoshka yields green and orange fluorescence upon blue excitation. As proof of concept, we converted existing, single-emission biosensors into a series of ratiometric calcium sensors (MatryoshCaMP6s) and ammonium transport activity sensors (AmTryoshka1;3). We additionally identified the internal acid-base equilibrium as a key determinant of the GCaMP dynamic range. Matryoshka technology promises flexibility in the design of a wide spectrum of ratiometric biosensors and expanded in vivo applications.Single fluorescent protein biosensors are susceptible to expression and instrumental artifacts. Here Ast et al. describe a dual fluorescent protein design whereby a reference fluorescent protein is nested within a reporter fluorescent protein to control for such artifacts while preserving sensitivity and dynamic range.


Asunto(s)
Técnicas Biosensibles , Proteínas Luminiscentes/metabolismo , Compuestos de Amonio/metabolismo , Arabidopsis/metabolismo , Transporte Biológico , Calcio/metabolismo , Fluorescencia , Células HEK293 , Humanos
17.
J Mol Biol ; 428(1): 153-164, 2016 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-26608811

RESUMEN

Many bacteria employ a protein organelle, the carboxysome, to catalyze carbon dioxide fixation in the Calvin Cycle. Only 10 genes from Halothiobacillus neapolitanus are sufficient for heterologous expression of carboxysomes in Escherichia coli, opening the door to detailed mechanistic analysis of the assembly process of this complex (more than 200MDa). One of these genes, csoS2, has been implicated in assembly but ascribing a molecular function is confounded by the observation that the single csoS2 gene yields expression of two gene products and both display an apparent molecular weight incongruent with the predicted amino acid sequence. Here, we elucidate the co-translational mechanism responsible for the expression of the two protein isoforms. Specifically, csoS2 was found to possess -1 frameshifting elements that lead to the production of the full-length protein, CsoS2B, and a truncated protein, CsoS2A, which possesses a C-terminus translated from the alternate frame. The frameshifting elements comprise both a ribosomal slippery sequence and a 3' secondary structure, and ablation of either sequence is sufficient to eliminate the slip. Using these mutants, we investigated the individual roles of CsoS2B and CsoS2A on carboxysome formation. In this in vivo formation assay, cells expressing only the CsoS2B isoform were capable of producing intact carboxysomes, while those with only CsoS2A were not. Thus, we have answered a long-standing question about the nature of CsoS2 in this model microcompartment and demonstrate that CsoS2B is functionally distinct from CsoS2A in the assembly of α-carboxysomes.


Asunto(s)
Proteínas Bacterianas/biosíntesis , Proteínas Bacterianas/genética , Sistema de Lectura Ribosómico , Regulación Bacteriana de la Expresión Génica , Halothiobacillus/genética , Isoformas de Proteínas/biosíntesis , Isoformas de Proteínas/genética , Escherichia coli/genética , Sustancias Macromoleculares/metabolismo , Multimerización de Proteína
18.
ACS Cent Sci ; 1(3): 148-56, 2015 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-27162964

RESUMEN

Short hydrogen bonds and specifically low-barrier hydrogen bonds (LBHBs) have been the focus of much attention and controversy for their possible role in enzymatic catalysis. The green fluorescent protein (GFP) mutant S65T, H148D has been found to form a very short hydrogen bond between Asp148 and the chromophore resulting in significant spectral perturbations. Leveraging the unique autocatalytically formed chromophore and its sensitivity to this interaction we explore the consequences of proton affinity matching across this putative LBHB. Through the use of noncanonical amino acids introduced through nonsense suppression or global incorporation, we systematically modify the acidity of the GFP chromophore with halogen substituents. X-ray crystal structures indicated that the length of the interaction with Asp148 is unchanged at ∼2.45 Å while the absorbance spectra demonstrate an unprecedented degree of color tuning with increasing acidity. We utilized spectral isotope effects, isotope fractionation factors, and a simple 1D model of the hydrogen bond coordinate in order to gain insight into the potential energy surface and particularly the role that proton delocalization may play in this putative short hydrogen bond. The data and model suggest that even with the short donor-acceptor distance (∼2.45 Å) and near perfect affinity matching there is not a LBHB, that is, the barrier to proton transfer exceeds the H zero-point energy.

19.
Biochemistry ; 53(37): 5947-57, 2014 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-25184668

RESUMEN

Proton transfer plays an important role in the optical properties of green fluorescent protein (GFP). While much is known about excited-state proton transfer reactions (ESPT) in GFP occurring on ultrafast time scales, comparatively little is understood about the factors governing the rates and pathways of ground-state proton transfer. We have utilized a specific isotopic labeling strategy in combination with one-dimensional (13)C nuclear magnetic resonance (NMR) spectroscopy to install and monitor a (13)C directly adjacent to the GFP chromophore ionization site. The chemical shift of this probe is highly sensitive to the protonation state of the chromophore, and the resulting spectra reflect the thermodynamics and kinetics of the proton transfer in the NMR line shapes. This information is complemented by time-resolved NMR, fluorescence correlation spectroscopy, and steady-state absorbance and fluorescence measurements to provide a picture of chromophore ionization reactions spanning a wide time domain. Our findings indicate that proton transfer in GFP is described well by a two-site model in which the chromophore is energetically coupled to a secondary site, likely the terminal proton acceptor of ESPT, Glu222. Additionally, experiments on a selection of GFP circular permutants suggest an important role played by the structural dynamics of the seventh ß-strand in gating proton transfer from bulk solution to the buried chromophore.


Asunto(s)
Proteínas Fluorescentes Verdes/química , Isótopos de Carbono , Cinética , Modelos Moleculares , Resonancia Magnética Nuclear Biomolecular , Protones , Espectrometría de Fluorescencia
20.
J Am Chem Soc ; 131(44): 15988-9, 2009 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-19839621

RESUMEN

Semisynthetic green fluorescent proteins (GFPs) can be prepared by producing truncated GFPs recombinantly and assembling them with synthetic beta-strands of GFP. The yield from expressing the truncated GFPs is low, and the chromophore is either partially formed or not formed. An alternative method is presented in which full-length proteins are produced recombinantly with a protease site inserted between the structural element to be removed and the rest of the protein. The native peptide can then be replaced by cutting the protease site with trypsin, denaturing in guanidine hydrochloride to disrupt the complex, separating the native peptide from the rest of the protein by size exclusion, and refolding the protein in the presence of a synthetic peptide. We show that this method allows for removal and replacement of the interior chromophore containing helix and that the GFP barrel is capable of inducing chromophore formation in a synthetic interior helix.


Asunto(s)
Proteínas Fluorescentes Verdes/química , Proteínas Recombinantes/síntesis química , Proteínas Fluorescentes Verdes/síntesis química , Péptido Hidrolasas/genética , Conformación Proteica , Desnaturalización Proteica , Renaturación de Proteína , Recombinación Genética , Tripsina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...