Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Environ Int ; 161: 107143, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35176575

RESUMEN

With the advent of the SARS-CoV-2 pandemic, Wastewater-Based Epidemiology (WBE) has been applied to track community infection in cities worldwide and has proven succesful as an early warning system for identification of hotspots and changingprevalence of infections (both symptomatic and asymptomatic) at a city or sub-city level. Wastewater is only one of environmental compartments that requires consideration. In this manuscript, we have critically evaluated the knowledge-base and preparedness for building early warning systems in a rapidly urbanising world, with particular attention to Africa, which experiences rapid population growth and urbanisation. We have proposed a Digital Urban Environment Fingerprinting Platform (DUEF) - a new approach in hazard forecasting and early-warning systems for global health risks and an extension to the existing concept of smart cities. The urban environment (especially wastewater) contains a complex mixture of substances including toxic chemicals, infectious biological agents and human excretion products. DUEF assumes that these specific endo- and exogenous residues, anonymously pooled by communities' wastewater, are indicative of community-wide exposure and the resulting effects. DUEF postulates that the measurement of the substances continuously and anonymously pooled by the receiving environment (sewage, surface water, soils and air), can provide near real-time dynamic information about the quantity and type of physical, biological or chemical stressors to which the surveyed systems are exposed, and can create a risk profile on the potential effects of these exposures. Successful development and utilisation of a DUEF globally requires a tiered approach including: Stage I: network building, capacity building, stakeholder engagement as well as a conceptual model, followed by Stage II: DUEF development, Stage III: implementation, and Stage IV: management and utilization. We have identified four key pillars required for the establishment of a DUEF framework: (1) Environmental fingerprints, (2) Socioeconomic fingerprints, (3) Statistics and modelling and (4) Information systems. This manuscript critically evaluates the current knowledge base within each pillar and provides recommendations for further developments with an aim of laying grounds for successful development of global DUEF platforms.


Asunto(s)
COVID-19 , Monitoreo Epidemiológico Basado en Aguas Residuales , COVID-19/epidemiología , Salud Global , Humanos , Pandemias , SARS-CoV-2 , Aguas Residuales
2.
Environ Monit Assess ; 185(3): 2167-77, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22628107

RESUMEN

Surface sediments collected from the Lagos Lagoon, Nigeria, and three adjoining rivers were analysed for their physicochemical properties and pseudo-total concentration of the potentially toxic metals (PTM) Cd, Cr, Cu, Pb and Zn. The concentration of the PTM varied seasonally and spatially. Odo-Iyaalaro was observed to be the most polluted river, with highest concentrations of 42.1 mg kg(-1), 102 mg kg(-1), 185 mg kg(-1), 154 mg kg(-1) and 1040 mg kg(-1) of Cd, Cr, Cu, Pb and Zn, respectively, while Ibeshe River was the least contaminated, apart from a site affected by Cu from the textile industry. Some of the sediments were found to be above the consensus-based probable effect concentrations and Dutch sediment guideline for metals. Overall metal concentrations were similar to those reported for other tropical lagoon and estuarine systems affected by anthropogenic inputs as a result of rapid urbanisation. Due to the large number of samples, principal component analysis was used to examine relationships within the data set. Generally, sediments collected during the dry season were observed to have higher concentration of PTM than those collected during the rainy season. This means that PTM could accumulate over a prolonged period and then be released relatively rapidly, on an annual basis, into tropical lagoon systems.


Asunto(s)
Sedimentos Geológicos/química , Metales/análisis , Contaminantes Químicos del Agua/análisis , Contaminación Química del Agua/estadística & datos numéricos , Monitoreo del Ambiente , Análisis Multivariante , Nigeria , Análisis de Componente Principal , Estaciones del Año , Agua de Mar/química , Industria Textil
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...