Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Fluoresc ; 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-38038874

RESUMEN

This study examined the surface morphology and photocatalytic activity of nickel oxide (NiO) nanoparticles prepared through a chemical method. The synthesized nanoparticle was characterized by using spectroscopic and microscopic techniques. Photocatalytic degradation of hazardous Eriochrome Black T (EBT) was carried out using the synthesized nanoparticle and the efficiency of the NiO used was determined. Highest degradation efficiency of 70% at 25 mg loading was observed at 40 min exposure time. The study concluded that the synthesized nanoparticles could be used in industrial wastewater treatment containing organic dyes.

2.
Heliyon ; 9(5): e15904, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37187900

RESUMEN

Herein, we reported the use of N-doped green-emitting carbon quantum dots (N-CQDs) as a fluorescent probe for determining of Fe3+ ions in Solanum tuberosum for the first time. The N-CQDs were synthesised through an efficient, one-step, and safe hydrothermal technique using citric acid as the carbon source and glutamine as a novel nitrogen source. The temporal evolution of the optical properties was investigated by varying the synthetic conditions with respect to temperature (160 °C, 180 °C, 200 °C, 220 °C and 240 °C) and citric acid: glutamine precursor ratio (1:1, 1:1.5, l.2,1:3 and 1:4). The N-CQDs was characterised using Fourier-Transform Infra-red Spectroscopy (FTIR) High-resolution transmission electron microscope (HRTEM), ultraviolet-visible spectroscopy (UV-vis) and X-Ray diffraction analysis (XRD) while its stability was evaluated in different media; NaCl, Roswell Park Memorial Institute (RPMI) and Phosphate Buffered Saline (PBS), and at different pHs. The N-CQDs displayed green (525 nm) emission and were spherical with an average particle diameter of 3.41 ± 0.76 nm. The FTIR indicated carboxylic, amino, and hydroxyl functional groups. The as-synthesised N-CQDs were stable in NaCl (up to 1 M), RPMI, and PBS without any significant change in its fluorescent intensity. The pH evaluation showed pHs 6 and 7 as the optimum pHs, while the fluorometric analysis showed selectivity towards Fe 3+ in the presence and absence of interfering ions. The detection limit of 1.05 µM was calculated, and the photoluminescence mechanism revealed static quenching. The as-synthesised N-CQDs was used as a fluorescent nanoprobe to determine the amount of Fe3+ in Solanum tuberosum (Potatoes) tubers. The result showed a high level of accuracy (92.13-96.20%) when compared with an established standard analytical procedure with excellent recoveries of 99.23-103.9%. We believe the as-synthesised N-CQDs can be utilised as a reliable and fast fluorescence nanoprobe for the determining of Fe3+ ions.

3.
Antibiotics (Basel) ; 10(11)2021 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-34827214

RESUMEN

Nanobiotechnology is a promising field in the development of safe antibiotics to combat the increasing trend of antibiotic resistance. Nature is a vast reservoir for green materials used in the synthesis of non-toxic and environmentally friendly nano-antibiotics. We present for the first time a facile, green, cost-effective, plant-mediated synthesis of platinum nanoparticles (PtNPs) using the extract of Combretum erythrophyllum (CE) plant leaves. The extract of CE served as both a bio-reductant and a stabilizing agent. The as-synthesized PtNPs were characterized using ultraviolet-visible (UV-Vis) absorption spectroscopy, high-resolution transmission electron microscopy (HR-TEM), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), and dynamic light scattering (DLS) techniques. The HR-TEM image confirmed that the PtNPs are ultrasmall, spherical, and well dispersed with an average particle diameter of 1.04 ± 0.26 nm. The PtNPs showed strong antibacterial activities against pathogenic Gram-positive Staphylococcus epidermidis (ATCC 14990) at a minimum inhibitory concentration (MIC) of 3.125 µg/mL and Gram-negative Klebsiella oxytoca (ATCC 8724) and Klebsiella aerogenes (ATCC 27853) at an MIC value of 1.56 µg/mL. The CE-stabilized PtNPs was mostly effective in Klebsiella species that are causative organisms in nosocomial infections.

4.
Int J Mol Sci ; 22(22)2021 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-34830396

RESUMEN

The link between the microbiome and cancer has led researchers to search for a potential probe for intracellular targeting of bacteria and cancer. Herein, we developed near infrared-emitting ternary AgInSe/ZnS quantum dots (QDs) for dual bacterial and cancer imaging. Briefly, water-soluble AgInSe/ZnS QDs were synthesized in a commercial kitchen pressure cooker. The as-synthesized QDs exhibited a spherical shape with a particle diameter of 4.5 ± 0.5 nm, and they were brightly fluorescent with a photoluminescence maximum at 705 nm. The QDs showed low toxicity against mouse mammary carcinoma (FM3A-Luc), mouse colon carcinoma (C26), malignant fibrous histiocytoma-like (KM-Luc/GFP) and prostate cancer cells, a greater number of accumulations in Staphylococcus aureus, and good cellular uptake in prostate cancer cells. This work is an excellent step towards using ternary QDs for diagnostic and guided therapy for prostate cancer.


Asunto(s)
Neoplasias de la Próstata/diagnóstico , Prostatitis/diagnóstico , Puntos Cuánticos/análisis , Staphylococcus aureus/aislamiento & purificación , Animales , Línea Celular Tumoral , Neoplasias del Colon/diagnóstico , Neoplasias del Colon/patología , Femenino , Histiocitoma Fibroso Maligno/diagnóstico , Histiocitoma Fibroso Maligno/patología , Humanos , Indio/química , Masculino , Neoplasias Mamarias Animales/diagnóstico , Neoplasias Mamarias Animales/patología , Ratones , Neoplasias de la Próstata/diagnóstico por imagen , Neoplasias de la Próstata/patología , Prostatitis/diagnóstico por imagen , Prostatitis/patología , Puntos Cuánticos/química , Selenio/química , Plata/química , Staphylococcus aureus/patogenicidad , Sulfuros/química , Agua/química , Compuestos de Zinc/química
5.
Pharmaceutics ; 13(9)2021 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-34575435

RESUMEN

Photothermal therapy has been established recently as a non-invasive treatment protocol for cancer metastatic lymph nodes. Although this treatment approach shows efficient tumour ablation towards lymph node metastasis, the monitoring and reporting of treatment progress using the lymphatic delivery channel still need to be explored. Herein, we investigated the anti-tumour effect of pegylated gold nanorods with a high aspect ratio (PAuNRs) delivered via the lymphatic route in a mouse model. In this study, breast carcinoma (FM3A-Luc) cells were inoculated in the subiliac lymph node (SiLN) to induce metastasis in the proper axillary lymph node (PALN). The treatment was initiated by injecting the PAuNRs into the accessory axillary lymph node (AALN) after tumour metastasis was confirmed in the PALN followed by external NIR laser irradiation under a temperature-controlled cooling system. The anti-tumour impact of the treatment was evaluated using an in vivo bioluminescence imaging system (IVIS). The results showed a time-dependent reduction in tumour activity with significant treatment response. Tumour growth was inhibited in all mice treated with PAuNRs under laser irradiation; results were statistically significant (** p < 0.01) even after treatment was concluded on day 3. We believe that this non-invasive technique would provide more information on the dynamics of tumour therapy using the lymphatically administered route in preclinical studies.

6.
Antibiotics (Basel) ; 10(8)2021 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-34438944

RESUMEN

We herein report a facile, green, cost-effective, plant-mediated synthesis of gold nanoparticles (AuNPs) for the first time using Combretum erythrophyllum (CE) plant leaves. The synthesis was conducted at room temperature using CE leaf extract serving as a reducing and capping agent. The as-synthesized AuNPs were found to be crystalline, well dispersed, and spherical in shape with an average diameter of 13.20 nm and an excellent stability of over 60 days. The AuNPs showed broad-spectrum antibacterial activities against both pathogenic Gram-positive (Staphylococcus epidermidis (ATCC14990), Staphylococcus aureus (ATCC 25923), Mycobacterium smegmatis (MC 215)) and Gram-negative bacteria (Proteus mirabilis (ATCC 7002), Escherichia coli (ATCC 25922), Klebsiella pneumoniae (ATCC 13822), Klebsiella oxytoca (ATCC 8724)), with a minimum inhibition concentration of 62.5 µg/mL. In addition, the as-synthesized AuNPs were highly stable with exceptional cell viability towards normal cells (BHK- 21) and cancerous cancer cell lines (cervical and lung cancer).

7.
J Fluoresc ; 31(5): 1297-1302, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34101098

RESUMEN

Graphene oxide is well known for its adsorption properties with aromatic compounds. In this study, graphene oxide and eco-friendly ternary CuInS2/ZnS QDs were used to prepare graphene oxide-qunatum dots (GO-QDs) nanocomposite via in-situ method. The composite was characterized using ultraviolet-visible (UV-Vis) spectroscopy, photoluminescence (PL) spectroscopy, transmission electron microscopy (TEM) and Fourier transform infrared (FT-IR) spectroscopy. The effect of the polycyclic aromatic hydrocarbons (PAHs) on the PL properties of the nanocomposite was investigated. The results showed that the addition of PAHs increased the PL intensity of the nanocomposite. This "turn-on" fluorescence approach can be used for the successful detection of PAHs in aqueous media.

8.
J Fluoresc ; 31(4): 1177-1190, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34032972

RESUMEN

A luminescent Cobalt(II) co-crystal [Co13(PDC)16(H2O)24.7H2O] 1 (where H2PDC = 2,6-pyridinedicarboxylic acid) have been prepared by oven-heating and slow evaporation of solvent. Single crystal X-ray diffraction (SCXRD) analysis revealed that 1 is a mixture of complexes that crystallizes in the triclinic space group P-1 and the geometry around the Co(II) ions is octahedral. The structure is extensively imbued with hydrogen bonding that helps in stabilizing the complex. Thermogravimetric analysis indicates that 1 is thermally stable up to 364 οC. The luminescence properties of 1 revealed a strong emission centered at 437 nm (λex = 345 nm) assigned to ligand to metal charge transfer (LMCT). The luminescence sensing of 1 towards volatile organic molecules were also examined. However, 1 displayed a turn off towards methanol compared to other molecules with high quenching efficiency and low limit of detection (3.5 × 10-4 vol%). The results show excellent selectively and high sensitivity. Powder X-ray diffraction studies revealed that the structural integrity of the complex was maintained after exposure to methanol vapour. Theoretical studies also revealed small binding energy (-413.2 au) and low energy gap (1.19) for 1-CH3OH adduct.

9.
Pharmaceutics ; 12(11)2020 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-33143388

RESUMEN

As the field of nanomedicine develops and tackles the recent surge in antibiotic resistance, there is a need to have an in-depth understanding and a synergistic view of research on the effectiveness of a metal nanoparticle (NP) as an antibacterial agent especially their mechanisms of action. The constant development of bacterial resistance has led scientists to develop novel antibiotic agents. Silver, gold and its bimetallic combination are one of the most promising metal NPs because they show strong antibacterial activity. In this review we discuss the mode of synthesis and the proposed mechanism of biocidal antibacterial activity of metal NPs. These mechanisms include DNA degradation, protein oxidation, generation of reactive oxygen species, lipid peroxidation, ATP depletion, damage of biomolecules and membrane interaction.

10.
Nanomaterials (Basel) ; 10(11)2020 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-33126610

RESUMEN

The application of gold nanorods (AuNRs) and graphene oxide (GO) has been widely studied due to their unique properties. Although each material has its own challenges, their combination produces an exceptional material for many applications such as sensor, therapeutics, and many others. This review covers the progress made so far in the synthesis and application of GO-coated AuNRs (GO-AuNRs). Initially, it highlights different methods of synthesizing AuNRs and GO followed by two approaches (ex situ and in situ approaches) of coating AuNRs with GO. In addition, the properties of GO-AuNRs composite such as biocompatibility, photothermal profiling, and their various applications, which include photothermal therapy, theranostic, sensor, and other applications of GO-AuNRs are also discussed. The review concludes with challenges associated with GO-AuNRs and future perspectives.

11.
Int J Biol Macromol ; 161: 1470-1476, 2020 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-32745549

RESUMEN

We herein report the synthesis of CuInS2/ZnS (CIS/ZnS) quantum dots (QDs) via a greener method followed by sodium alginate (SA) passivation and encapsulation into mesoporous channels of amine modified silica (SBA15-NH2) for improved photostability and biocompatibility. The as-synthesized CIS/ZnS QDs exhibited near infrared emission even after SA passivation and silica encapsulation. Transmission electron microscopy (TEM) and Small angle X-ray diffraction (XRD) revealed the mesoporous nature of the SBA-15 remained stable after loading with the SA-CIS/ZnS QDs. The effective encapsulation of SA-CIS/ZnS QDs inside the pores of SBA15-NH2 matrix was confirmed by Brunauer-Emmett-Teller (BET) pore volume analysis while the interaction between the QDs and SBA15-NH2 was confirmed using Fourier transform infrared (FTIR) spectroscopy. The photostability of the QDs was greatly enhanced after these modifications. The resultant SA-CIS/ZnS-SBA15-NH2 (QDs-silica) composite possessed remarkable biocompatibility towards lung cancer (A549) and kidney (HEK 293) cell lines making it a versatile material for theranostic applications.


Asunto(s)
Alginatos/química , Aminas/química , Cobre/química , Puntos Cuánticos , Dióxido de Silicio/química , Sulfuros/química , Compuestos de Zinc/química , Microscopía Electrónica de Transmisión , Espectrometría de Fluorescencia , Espectroscopía Infrarroja por Transformada de Fourier , Difracción de Rayos X
12.
J Fluoresc ; 30(6): 1331-1335, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32813189

RESUMEN

CuInS2 (CIS) quantum dots (QDs) are known to be ideal fluorophores based on their low toxicity and tunable emission. However, due to low quantum yield (QY) and photostability, the surface is usually passivated by a higher bandgap shell (e.g. ZnS). This always resulted in a blue-shifted emission position which is not usually favourable for biological imaging. To address this problem, we herein report the passivation of green synthesized near infra-red emitting glutathione (GSH) capped CuInS2 QDs using different concentration of sodium alginate (SA) at different temperatures. The as-synthesized QDs are small (~ 3.2 nm), highly crystalline and emitted in the near infra-red region. The optical results showed a 36% increase in photostability and a 2-fold increase in quantum yield at ratio 1:8 (SA: CIS) which is suitable for prolonged biological imaging applications. Transmission electron microscope and X-ray diffraction (XRD) analyses showed that the materials are highly crystalline without any change in shape and size after passivation with the biopolymer. Graphical Abstract.


Asunto(s)
Alginatos/química , Cobre/química , Colorantes Fluorescentes/química , Colorantes Fluorescentes/síntesis química , Indio/química , Puntos Cuánticos/química , Técnicas de Química Sintética , Glutatión/química , Tecnología Química Verde , Temperatura
13.
Sci Rep ; 10(1): 4936, 2020 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-32188925

RESUMEN

The toxicity of heavy metals present in binary semiconductor nanoparticles also known as quantum dots (QDs) has hindered their wide applications hence the advent of non-toxic ternary quantum dots. These new group of quantum dots have been shown to possess some therapeutic action against cancer cell lines but not significant enough to be referred to as an ideal therapeutic agent. In this report, we address this problem by conjugating red emitting CuInS/ZnS QDs to a 5,10,15,20-tetrakis(3-hydroxyphenyl)porphyrin -photosensitizer for improved bioactivities. The glutathione capped CuInS/ZnS QDs were synthesized in an aqueous medium using a kitchen pressure cooker at different Cu: In ratios (1:4 and 1:8) and at varied temperatures (95 °C, 190 °C and 235 °C). Optical properties show that the as-synthesized CuInS/ZnS QDs become red-shifted compared to the core (CuInS) after passivation with emission in the red region while the cytotoxicity study revealed excellent cell viability against normal kidney fibroblasts (BHK21). The highly fluorescent, water-soluble QDs were conjugated to 5,10,15,20-tetrakis(3-hydroxyphenyl)porphyrin (mTHPP) via esterification reactions at room temperature. The resultant water-soluble conjugate was then used for the cytotoxicity, fluorescent imaging and gene expression study against human monocytic leukemia cells (THP-1). Our result showed that the conjugate possessed high cytotoxicity against THP-1 cells with enhanced localized cell uptake compared to the bare QDs. In addition, the gene expression study revealed that the conjugate induced inflammation compared to the QDs as NFKB gene was over-expressed upon cell inflammation while the singlet oxygen (1O2) study showed the conjugate possessed large amount of 1O2, three times than the bare porphyrin. Thus, the as-synthesized conjugate looks promising as a therapeutic agent for cancer therapy.


Asunto(s)
Antineoplásicos/química , Antineoplásicos/farmacología , Nanopartículas del Metal , Porfirinas , Puntos Cuánticos/efectos adversos , Sulfuros , Compuestos de Zinc , Línea Celular Tumoral , Humanos , Leucemia Mieloide/genética , Leucemia Mieloide/metabolismo , Nanopartículas del Metal/química , Microscopía Confocal , Análisis Espectral , Sulfuros/química , Nanomedicina Teranóstica , Compuestos de Zinc/química
14.
Mater Sci Eng C Mater Biol Appl ; 106: 110181, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31753367

RESUMEN

I-III-VI chalcopyrite ternary quantum dots have emerged as a good alternative over the conventional II-VI and IV-VI chalcogenide binary QDs that usually consist of heavy metals such as Cd and Pb which has limited their bioapplications. Among the chalcopyrite QDs, AgInSe2 QDs has been the least developed due to the imbalanced cation reactivity, unwanted impurities, broad size distribution and resultant large particle sizes. In addition, the cell viability of these QDs still needs to be investigated on different cell lines both normal and cancerous ones. Herein, large-scale synthesis of water-soluble thioglycolic acid (TGA) capped and gelatin-stabilized AgInSe2 (AISe) core and AgInSe2/ZnSe (AISe/ZnSe) core/shell QDs in the absence of an inert atmosphere and their cell viability against different cell lines are reported. The optical and structural characteristics of the as-synthesized QDs were investigated by UV-visible (vis) absorption, photoluminescence (PL) and Fourier-transmission infrared (FTIR) spectroscopies, dynamic light scattering (DLS), X-ray diffraction (XRD), and high-resolution transmission electron microscope (HRTEM) techniques. Growth of ZnSe shell on the core AISe resulted in the blue shifting of the emission maximum position with the increased PL intensity. The QDs are small and spherical in shape with an average particle diameter of 2.8 nm and 3.2 nm for AISe and AISe/ZnSe QDs respectively. The in vitro cell viability assay revealed that the as-synthesized AISe/ZnSe QDs are not toxic towards cancerous (HeLa -cervical cancer and A549-lung cancer) and normal (BHK21 -Kidney) cell lines.


Asunto(s)
Puntos Cuánticos/química , Tioglicolatos/química , Agua/química , Supervivencia Celular/fisiología , Dispersión Dinámica de Luz , Humanos , Compuestos de Selenio/química , Espectroscopía Infrarroja por Transformada de Fourier , Difracción de Rayos X , Compuestos de Zinc/química
15.
Int J Nanomedicine ; 14: 7065-7078, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31507320

RESUMEN

BACKGROUND:  Metal-free, water-soluble and highly stable meso-tetra-(4-sulfonatophenyl) porphyrin (TPPS4) has been studied for their singlet oxygen quantum yield. However, TPPS4 suffers from inherent shortcomings. To address these, TPPS4 was conjugated to ternary copper indium sulphide/ zinc sulphide (CuInS2/ZnS) quantum dots (QDs). PURPOSE:  We herein report for the first time the synthesis of TPPS4-CuInS/ZnS QDs conjugate as an improved photosensitizer. METHODS:  Water-soluble TPPS4 was synthesized from tetraphenylporphyrin (TPPH2) after silica-gel purification. The CuInS/ZnS QDs were synthesized by hydrothermal method at a Cu:In ratio of 1:4. The porphyrin-QDs conjugate was formed via the daggling sulfonyl bond of the porphyrin and amine bond of the QDs. The effect of pH on the optical properties of TPPS4 was evaluated. The effect of Zn:Cu + In ratio on the ZnS shell passivation was examined to reduce structural defects on the as-synthesized QDs. RESULTS: Various spectroscopic techniques were used to confirm the successful conversion of the organic TPPH2 to water-soluble TPPS4. The singlet oxygen generation evaluation shows an improved singlet oxygen quantum yield from 0.19 for the porphyrin (TPPS4) alone to 0.69 after conjugation (CuInS/ZnS-TPPS4) with an increase in the reaction rate constant (k (s-1)).


Asunto(s)
Cobre/química , Indio/química , Porfirinas/síntesis química , Porfirinas/farmacología , Puntos Cuánticos/química , Sulfuros/síntesis química , Compuestos de Zinc/síntesis química , Concentración de Iones de Hidrógeno , Fenómenos Ópticos , Fármacos Fotosensibilizantes , Porfirinas/química , Puntos Cuánticos/ultraestructura , Oxígeno Singlete/química , Espectroscopía Infrarroja por Transformada de Fourier , Sulfuros/química , Temperatura , Compuestos de Zinc/química
16.
Molecules ; 24(13)2019 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-31277423

RESUMEN

Antibiotics are commonly used to control, treat, or prevent bacterial infections, however bacterial resistance to all known classes of traditional antibiotics has greatly increased in the past years especially in hospitals rendering certain therapies ineffective. To limit this emerging public health problem, there is a need to develop non-incursive, non-toxic, and new antimicrobial techniques that act more effectively and quicker than the current antibiotics. One of these effective techniques is antibacterial photodynamic therapy (aPDT). This review focuses on the application of porphyrins in the photo-inactivation of bacteria. Mechanisms of bacterial resistance and some of the current 'greener' methods of synthesis of meso-phenyl porphyrins are discussed. In addition, significance and limitations of aPDT are also discussed. Furthermore, we also elaborate on the current clinical applications and the future perspectives and directions of this non-antibiotic therapeutic strategy in combating infectious diseases.


Asunto(s)
Antibacterianos/farmacología , Fotoquimioterapia , Porfirinas/farmacología , Animales , Antibacterianos/efectos adversos , Antibacterianos/química , Bacterias/efectos de los fármacos , Humanos , Luz , Fotoquimioterapia/efectos adversos , Porfirinas/efectos adversos , Porfirinas/química
17.
Bioinorg Chem Appl ; 2019: 7147128, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31182957

RESUMEN

Cancer and bacterial diseases have been the most incidental diseases to date. According to the World Health Report 2018, at least every family is affected by cancer around the world. In 2012, 14.1 million people were affected by cancer, and that figure is bound to increase to 21.6 million in 2030. Medicine therefore sorts out ways of treatment using conventional methods which have been proven to have many side effects. Researchers developed photothermal and photodynamic methods to treat both cancer and bacterial diseases. These methods pose fewer effects on the biological systems but still no perfect method has been synthesized. The review serves to explore porphyrin and gold nanorods to be used in the treatment of cancer and bacterial diseases: porphyrins as photosensitizers and gold nanorods as delivery agents. In addition, the review delves into ways of incorporating photothermal and photodynamic therapy aimed at producing a less toxic, more efficacious, and specific compound for the treatment.

18.
Mater Sci Eng C Mater Biol Appl ; 95: 43-48, 2019 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-30573268

RESUMEN

We herein report the synthesis of MFe2O4 (M = Mn, Mg)/reduced graphene oxide (MFe2O4/RGO) through a simple and novel pressure cooker assisted solvothermal method. The structure and morphology of the as-prepared materials were investigated using X-ray diffraction (XRD), transmission electron microscopic (TEM) and X-ray photoelectron spectroscopy (XPS). The antimicrobial study revealed that the as-synthesized materials displayed good antibacterial effect against E. coli and S. aureus bacteria. In addition, due to the small particle size of MnFe2O4, MnFe2O4/RGO nanocomposite show better antibacterial activity than MgFe2O4/RGO nanocomposite.


Asunto(s)
Antiinfecciosos/química , Grafito/química , Nanocompuestos/química , Antiinfecciosos/farmacología , Escherichia coli/efectos de los fármacos , Escherichia coli/ultraestructura , Microscopía Electrónica de Transmisión , Nanocompuestos/ultraestructura , Staphylococcus aureus/efectos de los fármacos , Staphylococcus aureus/ultraestructura , Difracción de Rayos X
19.
Int J Biol Macromol ; 118(Pt A): 676-682, 2018 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-29959997

RESUMEN

Cinnamomum zeylanicum essential oil (CEO) is an effective antimicrobial agent. However, its high volatile nature and low stability require an efficient encapsulation system for drug delivery applications. We herein report the synthesis of ß-cyclodextrin modified chitosan (ß-CD/CS) nanoparticles binary system via ionic gelation method for the controlled release of CEO. The nanoparticles were characterized by optical and structural spectroscopies followed by the in-vitro released study. The results showed that the particles are spherical in shape with positively charged surface and maximum encapsulation efficiency of 58.03%. In vitro release profiles showed an overall CEO release of 71% for the binary system compared to 49% for CEO- loaded chitosan (CS) nanoparticles single system. The release mechanism followed Fickian behaviour while in vitro CEO release analysis showed a sustained and controlled release for over 120 h. The as-synthesized ß-cyclodextrin/chitosan nanoparticles offer a promising system for enhancing the therapeutic effect of CEO.


Asunto(s)
Quitosano/química , Cinnamomum zeylanicum/química , Portadores de Fármacos/química , Liberación de Fármacos , Nanopartículas/química , Aceites Volátiles/química , beta-Ciclodextrinas/química , Fenómenos Ópticos , Tamaño de la Partícula
20.
J Environ Sci (China) ; 64: 264-275, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-29478648

RESUMEN

We herein report the removal of amodiaquine, an emerging drug contaminant from aqueous solution using [Zn2(fum)2(bpy)] and [Zn4O(bdc)3] (fum=fumaric acid; bpy=4,4-bipyridine; bdc=benzene-1,4-dicarboxylate) metal-organic frameworks (MOFs) as adsorbents. The adsorbents were characterized by elemental analysis, Fourier transform infrared (FT-IR) spectroscopy, and powder X-ray diffraction (PXRD). Adsorption process for both adsorbents were found to follow the pseudo-first-order kinetics, and the adsorption equilibrium data fitted best into the Freundlich isotherm with the R2 values of 0.973 and 0.993 obtained for [Zn2(fum)2(bpy)] and [Zn4O(bdc)3] respectively. The maximum adsorption capacities foramodiaquine in this study were found to be 0.478 and 47.62mg/g on the [Zn2(fum)2(bpy)] and [Zn4O(bdc)3] MOFs respectively, and were obtained at pH of 4.3 for both adsorbents. FT-IR spectroscopy analysis of the MOFs after the adsorption process showed the presence of the drug. The results of the study showed that the prepared MOFs could be used for the removal of amodiaquine from wastewater.


Asunto(s)
Amodiaquina/análisis , Estructuras Metalorgánicas/química , Eliminación de Residuos Líquidos/métodos , Contaminantes Químicos del Agua/análisis , Adsorción , Amodiaquina/química , Ácidos Carboxílicos/química , Aguas Residuales/química , Contaminantes Químicos del Agua/química , Difracción de Rayos X , Zinc/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...