Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Polymers (Basel) ; 14(16)2022 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-36015683

RESUMEN

Solvent evaporation and leakage of liquid electrolytes that restrict the practicality of dye-sensitized solar cells (DSSCs) motivate the quest for the development of stable and ionic conductive electrolyte. Gel polymer electrolyte (GPE) fits the criteria, but it still suffers from low efficiency due to insufficient segmental motion within the electrolytes. Therefore, incorporating metal oxide nanofiller is one of the approaches to enhance the performance of electrolytes due to the presence of cross-linking centers that can be coordinated with the polymer segments. In this research, polymer composite gel electrolytes (PCGEs) employing poly (vinyl butyral-co-vinyl alcohol-co-vinyl acetate) (P(VB-co-VA-co-VAc)) terpolymer as host polymer, tetrapropylammonium iodide (TPAI) as dopant salt, and copper oxide (CuO) nanoparticles as the nanofillers were produced. The CuO nanofillers were synthesized by sonochemical method and subsequently calcined at different temperatures (i.e., 200, 350, and 500 °C), denoted as CuO-200, CuO-350, and CuO-500, respectively. All CuO nanoparticles have different shapes and sizes that are connected in a chain which impact the amorphous phase and the roughness of the surface, proven by the structural and the morphological analyses. It was found that the PCGE consisting of CuO-350 exhibited the highest ionic conductivity of 2.54 mS cm-1 and apparent diffusion coefficient of triiodide of 1.537 × 10-4 cm2 s-1. The enhancement in the electrochemical performance of the PCGEs is correlated with the change in shape (rod to sphere) and size of CuO particles which disrupted the structural order of the polymer chain, facilitating the redox couple transportation. Additionally, a DSSC was fabricated and achieved the highest power conversion efficiency of 7.05% with JSC of 22.1 mA cm-2, VOC of 0.61 V, and FF of 52.4%.

2.
ACS Appl Mater Interfaces ; 11(33): 30185-30196, 2019 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-31347822

RESUMEN

To overcome the critical limitations of liquid-electrolyte-based dye-sensitized solar cells, quasi-solid-state electrolytes have been explored as a means of addressing long-term device stability, albeit with comparatively low ionic conductivities and device performances. Although metal oxide additives have been shown to augment ionic conductivity, their propensity to aggregate into large crystalline particles upon high-heat annealing hinders their full potential in quasi-solid-state electrolytes. In this work, sonochemical processing has been successfully applied to generate fine Co3O4 nanoparticles that are highly dispersible in a PAN:P(VP-co-VAc) polymer-blended gel electrolyte, even after calcination. An optimized nanocomposite gel polymer electrolyte containing 3 wt % sonicated Co3O4 nanoparticles (PVVA-3) delivers the highest ionic conductivity (4.62 × 10-3 S cm-1) of the series. This property is accompanied by a 51% enhancement in the apparent diffusion coefficient of triiodide versus both unmodified and unsonicated electrolyte samples. The dye-sensitized solar cell based on PVVA-3 displays a power conversion efficiency of 6.46% under AM1.5 G, 100 mW cm-2. By identifying the optimal loading of sonochemically processed nanoparticles, we are able to generate a homogenous extended particle network that effectively mobilizes redox-active species through a highly amorphous host matrix. This effect is manifested in a selective 51% enhancement in photocurrent density (JSC = 16.2 mA cm-2) and a lowered barrier to N719 dye regeneration (RCT = 193 Ω) versus an unmodified solar cell. To the best of our knowledge, this work represents the highest known efficiency to date for dye-sensitized solar cells based on a sonicated Co3O4-modified gel polymer electrolyte. Sonochemical processing, when applied in this manner, has the potential to make meaningful contributions toward the ongoing mission to achieve the widespread exploitation of stable and low-cost dye-sensitized solar cells.

3.
Biosens Bioelectron ; 79: 763-75, 2016 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-26774092

RESUMEN

Nicotinamide Adenine Dinucleotide (NADH) is an important coenzyme in the human body that participates in many metabolic reactions. The impact of abnormal concentrations of NADH significantly causes different diseases in human body. Electrochemical detection of NADH using bare electrode is a challenging task especially in the presence of main electroactive interferences such as ascorbic acid (AA), uric acid (UA) and dopamine (DA). Modified electrodes have been widely explored to overcome the problems of poor sensitivity and selectivity occurred from bare electrodes. This review gives an overview on the progress of using conducting polymers, polyelectrolyte and its composites (co-polymer, carbonaceous, metal, metal oxide and clay) based modified electrodes for the sensing of NADH. In addition, developments on the fabrication of numerous conducting polymer composites based modified electrodes are clearly described.


Asunto(s)
Técnicas Biosensibles/instrumentación , Técnicas Electroquímicas/instrumentación , NAD/análisis , Polímeros/química , Animales , Técnicas Biosensibles/métodos , Conductividad Eléctrica , Técnicas Electroquímicas/métodos , Electrodos , Diseño de Equipo , Humanos , Modelos Moleculares
4.
Nanoscale Res Lett ; 9(1): 469, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25246872

RESUMEN

Hierarchical Si/ZnO trunk-branch nanostructures (NSs) have been synthesized by hot wire assisted chemical vapor deposition method for trunk Si nanowires (NWs) on indium tin oxide (ITO) substrate and followed by the vapor transport condensation (VTC) method for zinc oxide (ZnO) nanorods (NRs) which was laterally grown from each Si nanowires (NWs). A spin coating method has been used for zinc oxide (ZnO) seeding. This method is better compared with other group where they used sputtering method for the same process. The sputtering method only results in the growth of ZnO NRs on top of the Si trunk. Our method shows improvement by having the growth evenly distributed on the lateral sides and caps of the Si trunks, resulting in pine-leave-like NSs. Field emission scanning electron microscope image shows the hierarchical nanostructures resembling the shape of the leaves of pine trees. Single crystalline structure for the ZnO branch grown laterally from the crystalline Si trunk has been identified by using a lattice-resolved transmission electron microscope. A preliminary photoelectrochemical (PEC) cell testing has been setup to characterize the photocurrent of sole array of ZnO NR growth by both hydrothermal-grown (HTG) method and VTC method on ITO substrates. VTC-grown ZnO NRs showed greater photocurrent effect due to its better structural properties. The measured photocurrent was also compared with the array of hierarchical Si/ZnO trunk-branch NSs. The cell with the array of Si/ZnO trunk-branch NSs revealed four-fold magnitude enhancement in photocurrent density compared with the sole array of ZnO NRs obtain from VTC processes.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...