Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Neuropharmacology ; 242: 109759, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-37844866

RESUMEN

CHIR99021, also known as laduviglusib or CT99021, is a Glycogen-synthase kinase 3ß (GSK3ß) inhibitor, which has been reported as a promising drug for cardiomyocyte regeneration or treatment of sensorial hearing loss. Since the activation of dopamine (DA) receptors regulates dopamine synthesis and they can signal through the ß-arrestin pathway and GSK3ß, we decided to check the effect of GSK3ß inhibitors (CHIR99021, SB216763 and lithium ion) on the control of DA synthesis. Using ex vivo experiments with minces from rat brain striatum, we observed that CHIR99021, but not SB216763 or lithium, causes complete abrogation of both DA synthesis and accumulation, pointing to off-target effects of CHIR99021. This decrease can be attributed to tyrosine hydroxylase (TH) inhibition since the accumulation of l-DOPA in the presence of a DOPA decarboxylase inhibitor was similarly decreased. On the other hand, CHIR99021 caused a dramatic increase in the DOPAC/DA ratio, an indicator of DA metabolization, and hindered DA incorporation into striatum tissue. Tetrabenazine, an inhibitor of DA vesicular transport, also caused DA depletion and DOPAC/DA ratio increase to the same extent as CHIR99021. In addition, both CHIR99021 or SB216763, but not lithium, decreased TH phosphorylation in Ser19, but not in Ser31 or Ser40. These results demonstrate that CHIR99021 can lead to TH inactivation and DA depletion in brain striatum, opening the possibility of its use in DA-related disorders, and shows effects to be considered in future clinical trials. More work is needed to find the mechanism exerted by CHIR99021 on DA accumulation.


Asunto(s)
Cuerpo Estriado , Dopamina , Tirosina 3-Monooxigenasa , Animales , Ratas , Ácido 3,4-Dihidroxifenilacético/metabolismo , Cuerpo Estriado/enzimología , Dopamina/metabolismo , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Litio/farmacología , Tirosina 3-Monooxigenasa/antagonistas & inhibidores
2.
Neuropharmacology ; 212: 109058, 2022 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-35429504

RESUMEN

Synaptic events are important to define treatment strategies for brain disorders. In the present paper, freshly obtained rat brain striatal minces were incubated under different times and conditions to determine dopamine biosynthesis, storage, and tyrosine hydroxylase phosphorylation. Remarkably, we found that endogenous dopamine spontaneously accumulated during tissue incubation at 37 °C ex vivo while dopamine synthesis simultaneously decreased. We analyzed whether these changes in brain dopamine biosynthesis and storage were linked to dopamine feedback inhibition of its synthesis-limiting enzyme tyrosine hydroxylase. The aromatic-l-amino-acid decarboxylase inhibitor NSD-1015 prevented both effects. As expected, dopamine accumulation was increased with l-DOPA addition or VMAT2-overexpression, and dopamine synthesis decreased further with added dopamine, the VMAT2 inhibitor tetrabenazine or D2 auto-receptor activation with quinpirole, accordingly to the known synaptic effects of these treatments. Phosphorylation activation and inhibition of tyrosine hydroxylase on Ser31 and Ser40 with okadaic acid, Sp-cAMP and PD98059 also exerted the expected effects. However, no clear-cut association was found between dopamine feedback inhibition of its own biosynthesis and changes of tyrosine hydroxylase phosphorylation, assessed by Western blot and mass spectrometry. The later technique also revealed a new Thr30 phosphorylation in rat tyrosine hydroxylase. Our methodological assessment of brain dopamine synthesis and storage dynamics ex vivo could be applied to predict the in vivo effects of pharmacological interventions in animal models of dopamine-related disorders.


Asunto(s)
Dopamina , Tirosina 3-Monooxigenasa , Animales , Encéfalo/metabolismo , Cuerpo Estriado , Dopamina/farmacología , Retroalimentación , Ratas , Tirosina 3-Monooxigenasa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...