Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
RNA ; 2020 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-33323527

RESUMEN

Transition through cell cycle phases requires temporal and spatial regulation of gene expression to ensure accurate chromosome duplication and segregation. This regulation involves dynamic reprogramming of gene expression at multiple transcriptional and posttranscriptional levels. In transcriptionally silent oocytes, the CPEB-family of RNAbinding proteins coordinates temporal and spatial translation regulation of stored maternal mRNAs to drive meiotic progression. CPEB1 mediates mRNA localization to the meiotic spindle, which is required to ensure proper chromosome segregation. Temporal translational regulation also takes place in mitosis, where a large repertoire of transcripts are activated or repressed in specific cell cycle phases. However, whether control of localized translation at the spindle is required for mitosis is unclear, as mitotic and acentriolar-meiotic spindles are functionally and structurally different. Furthermore, the large differences in scale-ratio between cell volume and spindle size in oocytes compared to somatic mitotic cells may generate distinct requirements for gene expression compartmentalization in meiosis and mitosis. Here we show that mitotic spindles contain CPE-localized mRNAs and translating ribosomes. Moreover, CPEB1 and CPEB4 localize in the spindles and they may function sequentially in promoting mitotic stage transitions and correct chromosome segregation. Thus, CPEB1 and CPEB4 bind to specific spindle-associated transcripts controlling the expression and/or localization of their encoded factors that, respectively, drive metaphase and anaphase/cytokinesis.

2.
Biol Open ; 8(8)2019 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-31362950

RESUMEN

The culturing of mini-organs (organoids) in three-dimensions (3D) presents a simple and powerful tool to investigate the principles underlying human organ development and tissue self-organization in both healthy and diseased states. Applications of single molecule analysis are highly informative for a comprehensive understanding of the complexity underlying tissue and organ physiology. To fully exploit the potential of single molecule technologies, the adjustment of protocols and tools to 3D tissue culture is required. Single molecule RNA fluorescence in situ hybridization (smFISH) is a robust technique for visualizing and quantifying individual transcripts. In addition, smFISH can be employed to study splice variants, fusion transcripts as well as transcripts of multiple genes at the same time. Here, we develop a 3-day protocol and validation method to perform smFISH in 3D in whole human organoids. We provide a number of applications to exemplify the diverse possibilities for the simultaneous detection of distinct mRNA transcripts, evaluation of their spatial distribution and the identification of divergent cell lineages in 3D in organoids.

3.
Cell Rep ; 22(6): 1600-1614, 2018 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-29425513

RESUMEN

Organoid technology provides the possibility of culturing patient-derived colon tissue and colorectal cancers (CRCs) while maintaining all functional and phenotypic characteristics. Labeling stem cells, especially in normal and benign tumor organoids of human colon, is challenging and therefore limits maximal exploitation of organoid libraries for human stem cell research. Here, we developed STAR (stem cell Ascl2 reporter), a minimal enhancer/promoter element that reports transcriptional activity of ASCL2, a master regulator of LGR5+ intestinal stem cells. Using lentiviral infection, STAR drives specific expression in stem cells of normal organoids and in multiple engineered and patient-derived CRC organoids of different genetic makeup. STAR reveals that differentiation hierarchies and the potential for cell fate plasticity are present at all stages of human CRC development. Organoid technology, in combination with the user-friendly nature of STAR, will facilitate basic research into human adult stem cell biology.


Asunto(s)
Neoplasias Colorrectales/patología , Modelos Animales de Enfermedad , Intestinos , Organoides/patología , Células Madre/citología , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico , Genes Reporteros , Xenoinjertos , Humanos , Intestinos/citología , Ratones
4.
G3 (Bethesda) ; 7(6): 1753-1766, 2017 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-28428242

RESUMEN

Cdk1 (Cdc28 in yeast) is a cyclin-dependent kinase (CDK) essential for cell cycle progression and cell division in normal cells. However, CDK activity also underpins proliferation of tumor cells, making it a relevant study subject. While numerous targets and processes regulated by Cdc28 have been identified, the exact functions of Cdc28 are only partially understood. To further explore the functions of Cdc28, we systematically overexpressed ∼4800 genes in wild-type (WT) cells and in cells with artificially reduced Cdc28 activity. This screen identified 366 genes that, when overexpressed, specifically compromised cell viability under conditions of reduced Cdc28 activity. Consistent with the crucial functions of Cdc28 in cell cycle regulation and chromosome metabolism, most of these genes have functions in the cell cycle, DNA replication, and transcription. However, a substantial number of genes control processes not directly associated with the cell cycle, indicating that Cdc28 may also regulate these processes. Finally, because the dataset was enriched for direct Cdc28 targets, the results from this screen will aid in identifying novel targets and process regulated by Cdc28.


Asunto(s)
Quinasas CDC2-CDC28/genética , Mapeo Cromosómico , Epistasis Genética , Mutaciones Letales Sintéticas , Quinasas CDC2-CDC28/metabolismo , Ciclo Celular/genética , Biología Computacional/métodos , Análisis Mutacional de ADN , Replicación del ADN , Regulación Fúngica de la Expresión Génica , Redes Reguladoras de Genes , Genómica/métodos , Fenotipo , Proteínas Recombinantes de Fusión , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
5.
J Cell Sci ; 128(16): 2975-82, 2015 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-26148513

RESUMEN

Mitotic chromosome segregation is initiated by the anaphase promoting complex/cyclosome (APC/C) and its co-activator CDC20 (forming APC/C(CDC20)). APC/C(CDC20) is inhibited by the spindle assembly checkpoint (SAC) when chromosomes have not attached to spindle microtubules. Unattached kinetochores catalyze the formation of a diffusible APC/C(CDC20) inhibitor that comprises BUBR1 (also known as BUB1B), BUB3, MAD2 (also known as MAD2L1) and a second molecule of CDC20. Recruitment of these proteins to the kinetochore, as well as SAC activation, rely on the mitotic kinase BUB1, but the molecular mechanism by which BUB1 accomplishes this in human cells is unknown. We show that kinetochore recruitment of BUBR1 and BUB3 by BUB1 is dispensable for SAC activation. Unlike its yeast and nematode orthologs, human BUB1 does not associate stably with the MAD2 activator MAD1 (also known as MAD1L1) and, although required for accelerating the loading of MAD1 onto kinetochores, BUB1 is dispensable for the maintenance of steady-state levels of MAD1 there. Instead, we identify a 50-amino-acid segment that harbors the recently reported ABBA motif close to a KEN box as being crucial for the role of BUB1 in SAC signaling. The presence of this segment correlates with SAC activity and efficient binding of CDC20 but not of MAD1 to kinetochores.


Asunto(s)
Proteínas Cdc20/genética , Puntos de Control de la Fase M del Ciclo Celular/genética , Proteínas Serina-Treonina Quinasas/genética , Proteínas Cdc20/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Segregación Cromosómica/genética , Humanos , Cinetocoros/metabolismo , Mitosis/genética , Proteínas Nucleares/genética , Proteínas de Unión a Poli-ADP-Ribosa , Proteínas Serina-Treonina Quinasas/metabolismo , Huso Acromático/genética
6.
Mol Cell ; 57(5): 824-835, 2015 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-25661489

RESUMEN

Regulated recruitment of the kinase-adaptor complex BUB1/BUB3 to kinetochores is crucial for correcting faulty chromosome-spindle attachments and for spindle assembly checkpoint (SAC) signaling. BUB1/BUB3 localizes to kinetochores by binding phosphorylated MELT motifs (MELpT) in the kinetochore scaffold KNL1. Human KNL1 has 19 repeats that contain a MELT-like sequence. The repeats are, however, larger than MELT, and repeat sequences can vary significantly. Using systematic screening, we show that only a limited number of repeats is "active." Repeat activity correlates with the presence of a vertebrate-specific SHT motif C-terminal to the MELT sequence. SHT motifs are phosphorylated by MPS1 in a manner that requires prior phosphorylation of MELT. Phospho-SHT (SHpT) synergizes with MELpT in BUB3/BUB1 binding in vitro and in cells, and human BUB3 mutated in a predicted SHpT-binding surface cannot localize to kinetochores. Our data show sequential multisite regulation of the KNL1-BUB1/BUB3 interaction and provide mechanistic insight into evolution of the KNL1-BUB3 interface.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Cinetocoros/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Mitosis , Proteínas Serina-Treonina Quinasas/metabolismo , Secuencias de Aminoácidos/genética , Secuencia de Aminoácidos , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/genética , Células HeLa , Humanos , Immunoblotting , Cinetocoros/efectos de los fármacos , Puntos de Control de la Fase M del Ciclo Celular/genética , Proteínas Asociadas a Microtúbulos/genética , Modelos Moleculares , Datos de Secuencia Molecular , Mutación , Nocodazol/farmacología , Fosforilación , Proteínas de Unión a Poli-ADP-Ribosa , Unión Proteica , Proteínas Serina-Treonina Quinasas/genética , Estructura Terciaria de Proteína , Proteínas Tirosina Quinasas/genética , Proteínas Tirosina Quinasas/metabolismo , Interferencia de ARN , Secuencias Repetitivas de Aminoácido/genética , Homología de Secuencia de Aminoácido , Imagen de Lapso de Tiempo , Moduladores de Tubulina/farmacología
7.
Chromosoma ; 123(5): 471-80, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24695965

RESUMEN

Fidelity of chromosome segregation is monitored by the spindle assembly checkpoint (SAC). Key components of the SAC include MAD1, MAD2, BUB1, BUB3, BUBR1, and MPS1. These proteins accumulate on kinetochores in early prometaphase but are displaced when chromosomes attach to microtubules and/or biorient on the mitotic spindle. As a result, stable attachment of the final chromosome satisfies the SAC, permitting activation of the anaphase promoting complex/cyclosome (APC/C) and subsequent anaphase onset. SAC satisfaction is reversible, however, as addition of taxol during metaphase stops cyclin B1 degradation by the APC/C. We now show that targeting MAD1 to kinetochores during metaphase is sufficient to reestablish SAC activity after initial silencing. Using rapamycin-induced heterodimerization of FKBP-MAD1 to FRB-MIS12 and live monitoring of cyclin B1 degradation, we show that timed relocalization of MAD1 during metaphase can stop cyclin B1 degradation without affecting chromosome-spindle attachments. APC/C inhibition represented true SAC reactivation, as FKBP-MAD1 required an intact MAD2-interaction motif and MPS1 activity to accomplish this. Our data show that MAD1 kinetochore localization dictates SAC activity and imply that SAC regulatory mechanisms downstream of MAD1 remain functional in metaphase.


Asunto(s)
Puntos de Control del Ciclo Celular , Proteínas de Ciclo Celular/metabolismo , Cinetocoros/metabolismo , Metafase , Proteínas Nucleares/metabolismo , Huso Acromático/metabolismo , Proteínas de Ciclo Celular/genética , Células HeLa , Humanos , Proteínas Nucleares/genética , Transporte de Proteínas , Huso Acromático/genética
8.
J Cell Biol ; 203(6): 943-55, 2013 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-24344183

RESUMEN

Fidelity of chromosome segregation relies on coordination of chromosome biorientation and the spindle checkpoint. Central to this is the kinetochore scaffold KNL1 that integrates the functions of various mitotic regulators including BUB1 and BUBR1. We show that KNL1 contains an extensive array of short linear sequence modules that encompass TxxΩ and MELT motifs and that can independently localize BUB1. Engineered KNL1 variants with few modules recruit low levels of BUB1 to kinetochores but support a robust checkpoint. Increasing numbers of modules concomitantly increase kinetochore BUB1 levels and progressively enhance efficiency of chromosome biorientation. Remarkably, normal KNL1 function is maintained by replacing all modules with a short array of naturally occurring or identical, artificially designed ones. A minimal array of generic BUB recruitment modules in KNL1 thus suffices for accurate chromosome segregation. Widespread divergence in the amount and sequence of these modules in KNL1 homologues may represent flexibility in adapting regulation of mitotic processes to altered requirements for chromosome segregation during evolution.


Asunto(s)
Segregación Cromosómica/fisiología , Cinetocoros/metabolismo , Proteínas Asociadas a Microtúbulos/fisiología , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Puntos de Control del Ciclo Celular , Humanos , Cinetocoros/ultraestructura , Proteínas Asociadas a Microtúbulos/química , Proteínas Asociadas a Microtúbulos/genética , Datos de Secuencia Molecular , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/fisiología , Alineación de Secuencia
9.
Proc Natl Acad Sci U S A ; 108(46): 18748-53, 2011 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-22042866

RESUMEN

Cyclin-dependent kinases (CDKs) control the eukaryotic cell cycle, and a single CDK, Cdc28 (also known as Cdk1), is necessary and sufficient for cell cycle regulation in the budding yeast Saccharomyces cerevisiae. Cdc28 regulates cell cycle-dependent processes such as transcription, DNA replication and repair, and chromosome segregation. To gain further insight into the functions of Cdc28, we performed a high-throughput chemical-genetic array (CGA) screen aimed at unraveling the genetic network of CDC28. We identified 107 genes that strongly genetically interact with CDC28. Although these genes serve multiple cellular functions, genes involved in cell cycle regulation, transcription, and chromosome metabolism were overrepresented. DOA1, which is involved in maintaining free ubiquitin levels, as well as the RAD6-BRE1 pathway, which is involved in transcription, displayed particularly strong genetic interactions with CDC28. We discovered that DOA1 is important for cell cycle entry by supplying ubiquitin. Furthermore, we found that the RAD6-BRE1 pathway functions downstream of DOA1/ubiquitin but upstream of CDC28, by promoting transcription of cyclins. These results link cellular ubiquitin levels and the Rad6-Bre1 pathway to cell cycle progression.


Asunto(s)
Proteína Quinasa CDC28 de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Enzimas Ubiquitina-Conjugadoras/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Alelos , Ciclo Celular , Regulación Fúngica de la Expresión Génica/genética , Genes Fúngicos , Modelos Genéticos , Proteínas Represoras/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Factores de Transcripción/metabolismo , Ubiquitina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...