Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
Science ; 382(6666): 103-109, 2023 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-37797008

RESUMEN

Indigenous societies are known to have occupied the Amazon basin for more than 12,000 years, but the scale of their influence on Amazonian forests remains uncertain. We report the discovery, using LIDAR (light detection and ranging) information from across the basin, of 24 previously undetected pre-Columbian earthworks beneath the forest canopy. Modeled distribution and abundance of large-scale archaeological sites across Amazonia suggest that between 10,272 and 23,648 sites remain to be discovered and that most will be found in the southwest. We also identified 53 domesticated tree species significantly associated with earthwork occurrence probability, likely suggesting past management practices. Closed-canopy forests across Amazonia are likely to contain thousands of undiscovered archaeological sites around which pre-Columbian societies actively modified forests, a discovery that opens opportunities for better understanding the magnitude of ancient human influence on Amazonia and its current state.


Asunto(s)
Arqueología , Bosques , Humanos , Brasil
2.
Glob Chang Biol ; 29(24): 7085-7101, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37907071

RESUMEN

Most of the world's nations (around 130) have committed to reaching net-zero carbon dioxide or greenhouse gas (GHG) emissions by 2050, yet robust policies rarely underpin these ambitions. To investigate whether existing and expected national policies will allow Brazil to meet its net-zero GHG emissions pledge by 2050, we applied a detailed regional integrated assessment modelling approach. This included quantifying the role of nature-based solutions, such as the protection and restoration of ecosystems, and engineered solutions, such as bioenergy with carbon capture and storage. Our results highlight ecosystem protection as the most critical cost-effective climate mitigation measure for Brazil, whereas relying heavily on costly and not-mature-yet engineered solutions will jeopardise Brazil's chances of achieving its net-zero pledge by mid-century. We show that the full implementation of Brazil's Forest Code (FC), a key policy for emission reduction in Brazil, would be enough for the country to achieve its short-term climate targets up to 2030. However, it would reduce the gap to net-zero GHG emissions by 38% by 2050. The FC, combined with zero legal deforestation and additional large-scale ecosystem restoration, would reduce this gap by 62% by mid-century, keeping Brazil on a clear path towards net-zero GHG emissions by around 2040. While some level of deployment of negative emissions technologies will be needed for Brazil to achieve and sustain its net-zero pledge, we show that the more mitigation measures from the land-use sector, the less costly engineered solutions from the energy sector will be required. Our analysis underlines the urgent need for Brazil to go beyond existing policies to help fight climate emergency, to align its short- and long-term climate targets, and to build climate resilience while curbing biodiversity loss.


Asunto(s)
Efecto Invernadero , Gases de Efecto Invernadero , Agricultura/métodos , Ecosistema , Brasil , Gases de Efecto Invernadero/análisis
3.
Sci Data ; 10(1): 668, 2023 09 30.
Artículo en Inglés | MEDLINE | ID: mdl-37777552

RESUMEN

The Amazon Forest, the largest contiguous tropical forest in the world, stores a significant fraction of the carbon on land. Changes in climate and land use affect total carbon stocks, making it critical to continuously update and revise the best estimates for the region, particularly considering changes in forest dynamics. Forest inventory data cover only a tiny fraction of the Amazon region, and the coverage is not sufficient to ensure reliable data interpolation and validation. This paper presents a new forest above-ground biomass map for the Brazilian Amazon and the associated uncertainty both with a resolution of 250 meters and baseline for the satellite dataset the year of 2016 (i.e., the year of the satellite observation). A significant increase in data availability from forest inventories and remote sensing has enabled progress towards high-resolution biomass estimates. This work uses the largest airborne LiDAR database ever collected in the Amazon, mapping 360,000 km2 through transects distributed in all vegetation categories in the region. The map uses airborne laser scanning (ALS) data calibrated by field forest inventories that are extrapolated to the region using a machine learning approach with inputs from Synthetic Aperture Radar (PALSAR), vegetation indices obtained from the Moderate-Resolution Imaging Spectroradiometer (MODIS) satellite, and precipitation information from the Tropical Rainfall Measuring Mission (TRMM). A total of 174 field inventories geolocated using a Differential Global Positioning System (DGPS) were used to validate the biomass estimations. The experimental design allowed for a comprehensive representation of several vegetation types, producing an above-ground biomass map varying from a maximum value of 518 Mg ha-1, a mean of 174 Mg ha-1, and a standard deviation of 102 Mg ha-1. This unique dataset enabled a better representation of the regional distribution of the forest biomass and structure, providing further studies and critical information for decision-making concerning forest conservation, planning, carbon emissions estimate, and mechanisms for supporting carbon emissions reductions.


Asunto(s)
Biomasa , Bosques , Tecnología de Sensores Remotos , Brasil , Carbono/análisis , Tecnología de Sensores Remotos/métodos , Clima Tropical
4.
Environ Res ; 237(Pt 1): 116889, 2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-37595826

RESUMEN

Information on pollutant trophodynamics can be crucial for public health, as contaminated food consumption may lead to deleterious effects. This study was performed in Puruzinho Lake, a remote body of water in the Brazilian Amazon from which a riparian human population obtains an important part of its animal protein intake. Samples from 92 individuals, comprising 13 species and four trophic guilds (iliophagous, planktivorous, omnivorous, and piscivorous fish) were analysed for the determination of trace elements (Fe, Cr, Mn, Ni, Zn, Ca, Sr, Cd, Sn, Tl and Pb) and methylmercury concentrations. Samples from the same individuals had already been analysed for stable isotope (SI) measurements (δ13C and δ15N) in a previous investigation and the SI data have been statistically treated with those generated in this study for the evaluation of trophic dynamics of contaminants. Methylmercury was the only analyte that biomagnified, presenting TMF values of 4.65 and 4.55 for total and resident ichthyofauna, respectively. Trace elements presented either trophic dilution or independence from the trophic position, constituting a behaviour that was coherent with that found in the scientific literature. The similarity between Ni behaviour through the trophic web to that of essential elements contributes to the discussion on the essentiality of this metal to fish. Considering the Non-cancer Risk Assessment, the calculated Target Hazard Quotient (THQ) values were higher than 1.0 for all analysed individuals for methylmercury, as well as for only one individual for nickel. No other analyte rendered THQ values higher than 1.0.

5.
Sci Rep ; 13(1): 4829, 2023 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-36964148

RESUMEN

Wildfires are aggravating due to climate change. Public policies need territorial intelligence to prevent and promptly fight fires, especially in vast regions like Brazil. To this end, we have developed a fire-spread prediction system for the Brazilian Cerrado, the biome most affected by wildfires in South America. The system automatically uploads hot pixels and satellite data to calculate maps of fuels loads, vegetation moisture, and probability of burning for simulating fire spread thrice a day for the entire Cerrado at 25 ha and for nine conservation units at 0.04 ha spatial resolution. In both versions, the model attains 65-89% of spatial match. Model results together with ancillary data, e.g., historical burned areas and annual CO2 emissions from fires, are available on an interactive web-platform that serves as a tool for fire prevention and fight, particularly in the selected conservation units where the platform is being used for daily operations.

6.
J Environ Manage ; 316: 115330, 2022 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-35658265

RESUMEN

Nitrogen pollution is one of Brazil's most threatening and challenging environmental problems, caused mainly by productive activities aimed at meeting the demand of food, energy, and housing by a fast-growing population. Sustainable nitrogen management involves optimizing the beneficial effects of reactive nitrogen (Nr) use and, at the same time, mitigating the negative impacts of its excess on the environment and human health. Here we conduct an assessment of nitrogen sustainability in Brazil from 2000 to 2018 applying the Entropy Weight Method (EWM) to a set of nitrogen-related indicators within four subsystems: environmental, economic, social, and institutional. Our research objectives are to determine an overall Nitrogen Sustainability Index and discuss the relevance of indicators linked to the main anthropogenic sources of nitrogen pollution. By our analysis, the following indicators play a key role in determining nitrogen sustainability levels in the country: political stability, fertilizer consumption, population growth, and investments in water and sanitation. Our findings suggest that political and institutional concerns are greatly impacting sustainable actions towards nitrogen management, leading Brazil to reach only a weak-to-basic level of sustainability in the studied period. We highlight that neglecting the problems caused by the unsustainable nitrogen management can increase environmental, economic, and social issues, and jeopardize the achievement of the Sustainable Development Goals (SDGs). In addition to fostering of sustainability goals on the agriculture and energy sectors from the environmental, socioeconomic, and political perspectives, the importance of this assessment lies in supporting governments, policymakers, and civil society to develop sustainable nitrogen roadmaps to significantly reduce nitrogen waste by 2030, as outlined in the 2019 Colombo Declaration on Sustainable Nitrogen Management backed by the UN Environment Programme.


Asunto(s)
Nitrógeno , Desarrollo Sostenible , Brasil , Entropía , Contaminación Ambiental , Humanos
7.
Environ Monit Assess ; 194(3): 201, 2022 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-35182226

RESUMEN

This study aims to map the changes in land use and land cover between 1970 and 2018, analyzing the influence of the protected area s (PAs) in the Cerrado biome, specifically in the area of the Jalapão Mosaic. Images from the Landsat 1-MSS, 5-TM, and 8-OLI satellites were used and processed in SPRING and ArcGIS software. The analyses were based on three approaches: (1) the boundary of the Jalapão Mosaic, (2) the PAs, and (3) a comparison between the PAs and their surroundings. The Jalapão Mosaic results demonstrated that 26% (≅ 8410 km2) of the area was burned, and 15.5% (4971 km2) was anthropized in at least one of the analyzed periods. Among the PAs, the Serra Geral do Tocantins Ecological Station (Integral Protection) presented the largest burned area (43.7% ≅ 3095 km2); however, there was no significant increase in the anthropized areas due to fire. Meanwhile, the anthropized areas in the Rio Preto and Serra da Tabatinga Environmental Protection Areas (Sustainable Use) increased by 27.5% and by 75%, respectively, due to agricultural expansion. By analyzing the two groups of PAs and their surroundings, it was observed that the loss of natural vegetation was restrained and fires were less intense in the Integral Protection Units; in the Sustainable Use Units, there was a significant increase in the anthropized areas. Furthermore, over 70% of the anthropized areas occurred in the surrounding areas, thus showing the importance of creating PAs.


Asunto(s)
Monitoreo del Ambiente , Tecnología de Sensores Remotos , Brasil , Conservación de los Recursos Naturales/métodos , Programas Informáticos
8.
PLoS One ; 16(5): e0251778, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34014985

RESUMEN

Reducing the impacts of agriculture on the environment is one of the greatest challenges of this century. In Brazil, it is often argued that more land use change is needed to achieve food security. However, analyses seeking to understand the dynamics between agricultural production for exports and food intended for the Brazilian population have not approached the question if national agriculture is sufficient to provide Brazilians with the necessary nutrients, according to nutritional recommendations. In this sense, we sought to combine supply and dietary requirements for food (calories and nutrients) to assess trends in nutrient production and how future population projections and possible changes in diets would affect land necessity for nutritional security. We use sub-national data on agricultural production, population, Food Balance Sheets from FAO, and a compilation of nutritional information on the Brazilian agricultural production. Our results show that, in the last three decades, Brazil produced enough food calories to feed on average 115% of its population. We found that the agricultural land in 2017, without any expansion, is sufficient to feed, at least, 105% of projected population in 2060, considering the same productivity and dietary patterns. In a vegan diet scenario, less than 10% of the land dedicated to agricultural production in the past 30 years would be required. Despite limitations on supplying certain micro-nutrients, a vegan diet would require even less land in the future. We conclude that Brazilian agriculture could deliver enough food to meet Brazilians' nutritional needs without further land expansion. Food production is compatible with environmental conservation in Brazil, especially if meat consumption is reduced.


Asunto(s)
Agricultura/economía , Abastecimiento de Alimentos/economía , Nutrientes , Necesidades Nutricionales , Brasil , Nutrientes/economía , Nutrientes/provisión & distribución
9.
Sci Rep ; 11(1): 1388, 2021 01 14.
Artículo en Inglés | MEDLINE | ID: mdl-33446809

RESUMEN

We report large-scale estimates of Amazonian gap dynamics using a novel approach with large datasets of airborne light detection and ranging (lidar), including five multi-temporal and 610 single-date lidar datasets. Specifically, we (1) compared the fixed height and relative height methods for gap delineation and established a relationship between static and dynamic gaps (newly created gaps); (2) explored potential environmental/climate drivers explaining gap occurrence using generalized linear models; and (3) cross-related our findings to mortality estimates from 181 field plots. Our findings suggest that static gaps are significantly correlated to dynamic gaps and can inform about structural changes in the forest canopy. Moreover, the relative height outperformed the fixed height method for gap delineation. Well-defined and consistent spatial patterns of dynamic gaps were found over the Amazon, while also revealing the dynamics of areas never sampled in the field. The predominant pattern indicates 20-35% higher gap dynamics at the west and southeast than at the central-east and north. These estimates were notably consistent with field mortality patterns, but they showed 60% lower magnitude likely due to the predominant detection of the broken/uprooted mode of death. While topographic predictors did not explain gap occurrence, the water deficit, soil fertility, forest flooding and degradation were key drivers of gap variability at the regional scale. These findings highlight the importance of lidar in providing opportunities for large-scale gap dynamics and tree mortality monitoring over the Amazon.

10.
Waste Manag Res ; 39(3): 409-426, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33100193

RESUMEN

One of the most crucial parts of solid waste management is determining landfill site location, since multiple factors must be considered and there is no universal formula. The main purpose of this study is to make a worldwide systematic review of restriction criteria used for landfill siting using geographic information systems (GIS). Literature from the last years was thoroughly assessed, and 45 restrictions found were classified as environmental, economic, or social criteria. Our findings show that although the number of articles published has increased recently, they use on average seven restrictions, focusing mainly on environmental over economic and social criteria. In our boxplot statistical analysis, the most frequently used environmental restrictions are the distance from surface water resources (used in 77% of articles), slope (52%), and distance from groundwater founts (40%), with a median of 300 m, 20%, and 250 m, respectively. The most frequently used economic restrictions are distances from roads (60%), airports (40%), and power lines (18%), with medians of 275 m, 3000 m, and 75 m, respectively. The most frequently used social restrictions are distances from urban areas (45%), settlements and residential areas (40%), and cultural heritage or archaeological areas (23%), with medians of 1000 m. This information might help, on the one hand, governments to develop new legislation about landfill siting and on the other hand, decision-makers and scientists to produce new studies with different restrictive scenarios.


Asunto(s)
Eliminación de Residuos , Administración de Residuos , Sistemas de Información Geográfica , Residuos Sólidos , Instalaciones de Eliminación de Residuos
11.
Glob Chang Biol ; 27(3): 489-505, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33070397

RESUMEN

Peatlands are carbon-rich ecosystems that cover 185-423 million hectares (Mha) of the earth's surface. The majority of the world's peatlands are in temperate and boreal zones, whereas tropical ones cover only a total area of 90-170 Mha. However, there are still considerable uncertainties in C stock estimates as well as a lack of information about depth, bulk density and carbon accumulation rates. The incomplete data are notable especially in tropical peatlands located in South America, which are estimated to have the largest area of peatlands in the tropical zone. This paper displays the current state of knowledge surrounding tropical peatlands and their biophysical characteristics, distribution and carbon stock, role in the global climate, the impacts of direct human disturbances on carbon accumulation rates and greenhouse gas (GHG) emissions. Based on the new peat extension and depth data, we estimate that tropical peatlands store 152-288 Gt C, or about half of the global peatland emitted carbon. We discuss the knowledge gaps in research on distribution, depth, C stock and fluxes in these ecosystems which play an important role in the global carbon cycle and risk releasing large quantities of GHGs into the atmosphere (CO2 and CH4 ) when subjected to anthropogenic interferences (e.g., drainage and deforestation). Recent studies show that although climate change has an impact on the carbon fluxes of these ecosystems, the direct anthropogenic disturbance may play a greater role. The future of these systems as carbon sinks will depend on advancing current scientific knowledge and incorporating local understanding to support policies geared toward managing and conserving peatlands in vulnerable regions, such as the Amazon where recent records show increased forest fires and deforestation.


Asunto(s)
Cambio Climático , Ecosistema , Carbono/análisis , Ciclo del Carbono , Humanos , Suelo , América del Sur
12.
Glob Chang Biol ; 27(1): 177-189, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33118242

RESUMEN

Tall trees are key drivers of ecosystem processes in tropical forest, but the controls on the distribution of the very tallest trees remain poorly understood. The recent discovery of grove of giant trees over 80 meters tall in the Amazon forest requires a reevaluation of current thinking. We used high-resolution airborne laser surveys to measure canopy height across 282,750 ha of old-growth and second-growth forests randomly sampling the entire Brazilian Amazon. We investigated how resources and disturbances shape the maximum height distribution across the Brazilian Amazon through the relations between the occurrence of giant trees and environmental factors. Common drivers of height development are fundamentally different from those influencing the occurrence of giant trees. We found that changes in wind and light availability drive giant tree distribution as much as precipitation and temperature, together shaping the forest structure of the Brazilian Amazon. The location of giant trees should be carefully considered by policymakers when identifying important hot spots for the conservation of biodiversity in the Amazon.


Asunto(s)
Ecosistema , Árboles , Biodiversidad , Brasil , Bosques , Clima Tropical
13.
Sci Total Environ ; 746: 140998, 2020 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-32763600

RESUMEN

Biological nitrogen fixation (BNF) supports terrestrial primary productivity and plays key roles in mediating human-induced changes in global nitrogen (N) and carbon cycling. However, there are still critical uncertainties in our understanding of the amount of BNF occurring across terrestrial ecosystems, and of how terrestrial BNF will respond to global change. We synthesized BNF data from Latin America, a region reported to sustain some of the highest BNF rates on Earth, but that is underrepresented in previous data syntheses. We used meta-analysis and modeling approaches to estimate BNF rates across Latin America's major biomes and to evaluate the potential effects of increased N deposition and land-use change on these rates. Unmanaged tropical and subtropical moist forests sustained observed and predicted total BNF rates of 10 ± 1 and 14 ± 1 kg N ha-1 y-1, respectively, supporting the hypothesis that these forests sustain lower BNF rates than previously thought. Free-living BNF accounted for two-thirds of the total BNF in these forests. Despite an average 30% reduction of free-living BNF in response to experimental N-addition, our results suggest free-living BNF rate responses to current and projected N deposition across tropical and subtropical moist forests are small. In contrast, the conversion of unmanaged ecosystems to crop and pasture lands increased BNF rates across all terrestrial biomes, mostly in savannas, grasslands, and dry forests, increasing BNF rates 2-fold. The information obtained here provides a more comprehensive understanding of BNF patterns for Latin America.


Asunto(s)
Ecosistema , Fijación del Nitrógeno , Bosques , Humanos , América Latina , Nitrógeno
14.
Sustain Sci ; 15(6): 1723-1733, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32837574

RESUMEN

Urgent sustainability challenges require effective leadership for inter- and trans-disciplinary (ITD) institutions. Based on the diverse experiences of 20 ITD institutional leaders and specific case studies, this article distills key lessons learned from multiple pathways to building successful programs. The lessons reflect both the successes and failures our group has experienced, to suggest how to cultivate appropriate and effective leadership, and generate the resources necessary for leading ITD programs. We present two contrasting pathways toward ITD organizations: one is to establish a new organization and the other is to merge existing organizations. We illustrate how both benefit from a real-world focus, with multiple examples of trajectories of ITD organizations. Our diverse international experiences demonstrate ways to cultivate appropriate leadership qualities and skills, especially the ability to create and foster vision beyond the status quo; collaborative leadership and partnerships; shared culture; communications to multiple audiences; appropriate monitoring and evaluation; and perseverance. We identified five kinds of resources for success: (1) intellectual resources; (2) institutional policies; (3) financial resources; (4) physical infrastructure; and (5) governing boards. We provide illustrations based on our extensive experience in supporting success and learning from failure, and provide a framework that articulates the major facets of leadership in inter- and trans-disciplinary organizations: learning, supporting, sharing, and training.

15.
An Acad Bras Cienc ; 92(2): e20180836, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32520218

RESUMEN

The climate change projections for the Caatinga biome this century are for an increase in temperature and reduction in rainfall, leading to aridization and plant cover dominated by Cactaceae. The objective of this study was to model the potential distribution of Epiphyllum phyllanthus (L.) Haw., a cactus that is native to the Caatinga biome, considering two possible future climate scenarios, to assess this species' spatio-temporal response to these climate change, and thus to evaluate the need or not for conservation measures. For this purpose, we obtained biogeographic information on the target species from biodiversity databases, choosing nine environmental variables and applying the MaxEnt algorithm. We considered the time intervals 2041-2060 and 2061-2080, centered on 2050 and 2070, respectively, and the greenhouse gas scenarios RCP4.5 and 8.5. For all the scenarios considered, the models generated for 2050 and 2070 projected drastic contraction (greater than 80%) for the areas of potential occurrence of the species in relation to the present potential. The remaining areas were found to be concentrated in the northern portion of the biome, specifically in the northern part of the state of Ceará, which has particular characteristics.


Asunto(s)
Biodiversidad , Cactaceae/fisiología , Cambio Climático , Ecosistema , Phyllanthus/fisiología , Cactaceae/clasificación , Conservación de los Recursos Naturales , Modelos Biológicos , Phyllanthus/clasificación
16.
Data Brief ; 30: 105602, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32382611

RESUMEN

To construct this database, we integrate the nutritional content of 62 crops and 5 livestock categories to estimate the amount of 21 macro and micro-nutrients (including energy) that were produced from agriculture in each Brazilian municipality during the last three decades. Additionally, we allocate these nutrients according to their share in the food system (for example, human food, animal feed, export etc.). It is a unique data source on macro and micro-nutrients availability for human consumption and animal feed, but also regarding another aspects of the food system, such as international agricultural trade, energy production (for example, in the form of ethanol) or post-harvest and post-processing losses, from local to national levels, in a wide time frame of 30 years. This database can be used in scientific research regarding food and nutrition security and in the construction of indicators for monitoring food and agricultural programs and policies that aim at the promotion of food and nutritional security. Also, it has the potential to enable broader analysis of the food system as whole in terms of food stability and resilience.

17.
Ambio ; 49(10): 1581-1586, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31981086

RESUMEN

The importance of greenhouse gas inventories cannot be overstated: the process of producing inventories informs strategies that governments will use to meet emissions reduction targets. The Intergovernmental Panel on Climate Change (IPCC) leads an effort to develop and refine internationally agreed upon methodologies for calculating and reporting greenhouse gas emissions and removals. We argue that these guidelines are not equipped to handle the task of developing national greenhouse gas inventories for most countries. Inventory guidelines are vital to implementing climate action, and we highlight opportunities to improve their timeliness and accuracy. Such reforms should provide the means to better understand and advance the progress countries are making toward their Paris commitments. Now is the time to consider challenges posed by the current process to develop the guidelines, and to avail the policy community of recent major advances in quantitative and expert synthesis to overhaul the process and thereby better equip multi-national efforts to limit climate change.


Asunto(s)
Gases de Efecto Invernadero , Cambio Climático , Efecto Invernadero
18.
Conserv Biol ; 34(2): 427-437, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31386221

RESUMEN

Brazil hosts the largest expanse of tropical ecosystems within protected areas (PAs), which shelter biodiversity and support traditional human populations. We assessed the vulnerability to climate change of 993 terrestrial and coastal-marine Brazilian PAs by combining indicators of climatic-change hazard with indicators of PA resilience (size, native vegetation cover, and probability of climate-driven vegetation transition). This combination of indicators allows the identification of broad climate-change adaptation pathways. Seventeen PAs (20,611 km2 ) were highly vulnerable and located mainly in the Atlantic Forest (7 PAs), Cerrado (6), and the Amazon (4). Two hundred fifty-eight PAs (756,569 km2 ), located primarily in Amazonia, had a medium vulnerability. In the Amazon and western Cerrado, the projected severe climatic change and probability of climate-driven vegetation transition drove vulnerability up, despite the generally good conservation status of PAs. Over 80% of PAs of high or moderate vulnerability are managed by indigenous populations. Hence, besides the potential risks to biodiversity, the traditional knowledge and livelihoods of the people inhabiting these PAs may be threatened. In at least 870 PAs, primarily in the Atlantic Forest and Amazon, adaptation could happen with little or no intervention due to low climate-change hazard, high resilience status, or both. At least 20 PAs in the Atlantic Forest, Cerrado, and Amazonia should be targeted for stronger interventions (e.g., improvement of ecological connectivity), given their low resilience status. Despite being a first attempt to link vulnerability and adaptation in Brazilian PAs, we suggest that some of the PAs identified as highly or moderately vulnerable should be prioritized for testing potential adaptation strategies in the near future.


Evaluación de la Vulnerabilidad y Adaptación al Cambio Climático de Áreas Protegidas en Brasil Resumen Brasil alberga la mayor extensión de ecosistemas tropicales dentro de áreas protegidas (AP), que protegen la biodiversidad y sustentan a poblaciones humanas tradicionales. Evaluamos la vulnerabilidad al cambio climático de 993 AP brasileñas terrestres y costeras-marinas mediante la combinación de indicadores de riesgo de cambio climático con indicadores de la resiliencia de AP (tamaño, cobertura de vegetación nativa y la probabilidad de transición en la vegetación como consecuencia del cambio climático). Esta combinación de indicadores permite la identificación de amplias rutas de adaptación al cambio climático. Diecisiete AP (20,611 km2 ) fueron altamente vulnerables y se localizaron principalmente en el Bosque Atlántico (7 AP), El Cerrado (6) y la Amazonía (4). Doscientos cincuenta y ocho AP (756,569 km2 ), localizadas principalmente en la Amazonía, tuvieron vulnerabilidad media. En la Amazonía y el oeste de El Cerrado, el severo cambio climático proyectado y la probabilidad de transición de vegetación dirigida por el clima incrementó la vulnerabilidad, a pesar del estado de conservación generalmente bueno de las AP. Más de 80% de las AP con vulnerabilidad alta o media son manejadas por poblaciones indígenas. Por lo tanto, además de los riesgos potenciales para la biodiversidad, también hay amenazas para el conocimiento tradicional y las formas de vida de la gente que habita en esas AP. En por lo menos 870 AP, principalmente en el Bosque Atlántico y la Amazonía, la adaptación podría suceder con poca o ninguna intervención debido al bajo riesgo de cambio climático, estatus de resiliencia alta, o ambos. Por lo menos 20 AP en el Bosque Atlántico, El Cerrado y la Amazonía deberían ser objetivo de intervenciones mayores (e.g., mejoramiento de la conectividad ecológica), dada su estatus de resiliencia baja. A pesar de que es un primer intento para vincular vulnerabilidad y adaptación en AP brasileñas, sugerimos que algunas de las AP identificadas como alta o moderadamente vulnerables se deben priorizar para probar posibles estrategias de adaptación en un futuro próximo.


Asunto(s)
Conservación de los Recursos Naturales , Ecosistema , Biodiversidad , Brasil , Cambio Climático , Bosques , Humanos
19.
Carbon Balance Manag ; 14(1): 11, 2019 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-31482475

RESUMEN

BACKGROUND: Brazilian Amazon forests contain a large stock of carbon that could be released into the atmosphere as a result of land use and cover change. To quantify the carbon stocks, Brazil has forest inventory plots from different sources, but they are unstandardized and not always available to the scientific community. Considering the Brazilian Amazon extension, the use of remote sensing, combined with forest inventory plots, is one of the best options to estimate forest aboveground biomass (AGB). Nevertheless, the combination of limited forest inventory data and different remote sensing products has resulted in significant differences in the spatial distribution of AGB estimates. This study evaluates the spatial coverage of AGB data (forest inventory plots, AGB maps and remote sensing products) in undisturbed forests in the Brazilian Amazon. Additionally, we analyze the interconnection between these data and AGB stakeholders producing the information. Specifically, we provide the first benchmark of the existing field plots in terms of their size, frequency, and spatial distribution. RESULTS: We synthesized the coverage of forest inventory plots, AGB maps and airborne light detection and ranging (LiDAR) transects of the Brazilian Amazon. Although several extensive forest inventories have been implemented, these AGB data cover a small fraction of this region (e.g., central Amazon remains largely uncovered). Although the use of new technology such as airborne LiDAR cover a significant extension of AGB surveys, these data and forest plots represent only 1% of the entire forest area of the Brazilian Amazon. CONCLUSIONS: Considering that several institutions involved in forest inventories of the Brazilian Amazon have different goals, protocols, and time frames for forest surveys, forest inventory data of the Brazilian Amazon remain unstandardized. Research funding agencies have a very important role in establishing a clear sharing policy to make data free and open as well as in harmonizing the collection procedure. Nevertheless, the use of old and new forest inventory plots combined with airborne LiDAR data and satellite images will likely reduce the uncertainty of the AGB distribution of the Brazilian Amazon.

20.
Biota Neotrop. (Online, Ed. ingl.) ; 19(4): e20190865, 2019. graf
Artículo en Inglés | LILACS-Express | LILACS | ID: biblio-1038864

RESUMEN

Abstract: Biodiversity and ecosystems are important elements for addressing national and global socioeconomic and environmental crises, since they provide new development opportunities, for example, as source of job and income creation, and reduction in poverty and socioeconomic inequity. Brazilian biological diversity is also expressed in its immense cultural diversity, with a great variety of knowledge holders. These peoples possess vast knowledge on agrobiodiversity, fishing, fire management, natural medicine, among others of commercial, cultural and spiritual value. The main conclusions of this Summary for Police Makers is that land use changes and climate changes have been - and will continue to be throughout this century - the main drivers that result in the loss of biodiversity and ecosystem services in the country. Political interventions at different levels (from local to national, from public to private) and the enforcement of existing laws (regulatory mechanisms and incentives) are required to cope with the mitigation of the negative impacts of biodiversity and ecosystem services loss. Brazil has already a wide variety of policy instruments and socioenvironmental governance options, as well as global commitments (ODS, Aich Targets, Paris Agreement) related to the objective of a sustainable future. However, inefficient management control or lack of incentive to comply with the rules pose risks to consolidating the path to this future. The country has strong and capable institutions, but infrastructural problems, slow processes, inefficient measurements and judicial, social and ecological conflicts obstruct a proficient performance. There is a lack of communication between science and society which needs to be improved by establishing an effective flow that makes communication inclusive and representative, reaching public and private decision makers. Permanent efforts to integrate Science and policy knowledges are desirable to build confidence between policy makers and researchers.


Resumo: A biodiversidade e os ecossistemas são elementos importantes para enfrentar as crises socioeconômicas e ambientais nacionais e globais, uma vez que proporcionam novas oportunidades de desenvolvimento. Incorporar a biodiversidade na vida cotidiana é uma oportunidade de ouro para promover o uso sustentável da biodiversidade e dos serviços ecossistêmicos. A conservação e a restauração da biodiversidade, dos ecossistemas e de seus serviços associados mostram potencial para um novo desenvolvimento social e econômico, como fonte de geração de emprego e renda, redução da pobreza e da desigualdade socioeconômica. A diversidade biológica brasileira também se expressa em sua imensa diversidade cultural, com uma grande variedade de detentores de conhecimento indígenas e tradicionais. Esses povos possuem vasto conhecimento sobre agrobiodiversidade, pesca, manejo do fogo, medicina natural, entre outros de valor comercial, cultural e espiritual. As principais conclusões deste Sumário para Tomadores de Decisão é que as mudanças no uso da terra e as mudanças climáticas tenham sido - e continuarão sendo ao longo deste século - os principais vetores da perda de biodiversidade e serviços ecossistêmicos no país. Intervenções políticas em diferentes níveis (do local ao nacional, do público ao privado) e a aplicação das leis existentes (mecanismos regulatórios e incentivos) são necessárias para promover a mitigação dos impactos negativos sobre a biodiversidade e a perda de serviços ecossistêmicos. O Brasil já possui uma ampla variedade de instrumentos de política e opções de governança socioambiental, bem como compromissos globais (ODS, Metas de Aichi, Acordo de Paris) relacionados à possibilidade de um futuro sustentável. Entretanto, o controle ineficiente da gestão ou a falta de incentivo para cumprir as regras traz riscos para a consolidação do caminho para esse futuro. O país tem instituições fortes e capazes, mas problemas de infraestrutura, processos lentos, medidas ineficazes e conflitos judiciais, sociais e ecológicos impedem a realização de um desempenho eficiente. Há uma falta de comunicação entre a ciência e a sociedade que precisa ser melhorada por meio do estabelecimento de um fluxo efetivo que torne a comunicação inclusiva e representativa, alcançando os tomadores de decisão públicos e privados. Esforços permanentes para integrar essas duas esferas de conhecimento na sociedade são desejáveis para criar confiança entre os formuladores de políticas e os pesquisadores.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA