Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 13(1): 21591, 2023 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-38062191

RESUMEN

Hyperspectral Imaging (HSI) combines microscopy and spectroscopy to assess the spatial distribution of spectroscopically active compounds in objects, and has diverse applications in food quality control, pharmaceutical processes, and waste sorting. However, due to the large size of HSI datasets, it can be challenging to analyze and store them within a reasonable digital infrastructure, especially in waste sorting where speed and data storage resources are limited. Additionally, as with most spectroscopic data, there is significant redundancy, making pixel and variable selection crucial for retaining chemical information. Recent high-tech developments in chemometrics enable automated and evidence-based data reduction, which can substantially enhance the speed and performance of Non-Negative Matrix Factorization (NMF), a widely used algorithm for chemical resolution of HSI data. By recovering the pure contribution maps and spectral profiles of distributed compounds, NMF can provide evidence-based sorting decisions for efficient waste management. To improve the quality and efficiency of data analysis on hyperspectral imaging (HSI) data, we apply a convex-hull method to select essential pixels and wavelengths and remove uninformative and redundant information. This process minimizes computational strain and effectively eliminates highly mixed pixels. By reducing data redundancy, data investigation and analysis become more straightforward, as demonstrated in both simulated and real HSI data for plastic sorting.

2.
Anal Chem ; 95(26): 9787-9796, 2023 07 04.
Artículo en Inglés | MEDLINE | ID: mdl-37341384

RESUMEN

Distinguishing isomeric saccharides poses a major challenge for analytical workflows based on (liquid chromatography) mass spectrometry (LC-MS). In recent years, many studies have proposed infrared ion spectroscopy as a possible solution as the orthogonal, spectroscopic characterization of mass-selected ions can often distinguish isomeric species that remain unresolved using conventional MS. However, the high conformational flexibility and extensive hydrogen bonding in saccharides cause their room-temperature fingerprint infrared spectra to have broad features that often lack diagnostic value. Here, we show that room-temperature infrared spectra of ion-complexed saccharides recorded in the previously unexplored far-infrared wavelength range (300-1000 cm-1) provide well-resolved and highly diagnostic features. We show that this enables distinction of isomeric saccharides that differ either by their composition of monosaccharide units and/or the orientation of their glycosidic linkages. We demonstrate the utility of this approach from single monosaccharides up to isomeric tetrasaccharides differing only by the configuration of a single glycosidic linkage. Furthermore, through hyphenation with hydrophilic interaction liquid chromatography, we identify oligosaccharide biomarkers in patient body fluid samples, demonstrating a generalized and highly sensitive MS-based method for the identification of saccharides found in complex sample matrices.


Asunto(s)
Errores Innatos del Metabolismo , Oligosacáridos , Humanos , Oligosacáridos/química , Isomerismo , Monosacáridos , Espectrofotometría Infrarroja , Biomarcadores , Iones
3.
Anal Chim Acta ; 1227: 340325, 2022 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-36089326

RESUMEN

Vast evolution in the analytical instruments (e.g. Chemical imaging) makes higher-order data recording more facile. Such sophisticated data acquisition schemes, definitely call for updated data treatment tools. In this way, chemometrics has a decisive role in the analytical chemistry area not only to analyze, but also to expect such data generation possibilities, e.g. combining data coming from instruments with different orders. "Partial trilinearity constraint" is specially planned to cope with differences in bi-and-trilinear models. In this research, we tried to shed light on the accuracy of the mixed multilinear multimodal analysis under partial trilinearity constraint and its conjugation with force-to-zero constraint. For this, several numerical and real experiments are designed by changing the number of components in each block. Finally, some practical guidelines are provided for the analytical chemists.

4.
J Chromatogr A ; 1675: 463168, 2022 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-35667219

RESUMEN

A two steps proposal for the purification of immunoglobulin G from human blood plasma is investigated. The first step is precipitation using cold ethanol based on the Cohn method with some modification and the second step is a chromatographic separation by DEAE-Sepharose FF resin as a weak anion exchanger. The presence of interferent in the region3 of chromatographic fractions, which is co-eluted with IgG, restricts the application of the mechanistic chromatography model. Therefore, multivariate cure resolution-alternating least squares (MCR-ALS) as a soft method is employed on measured absorbance data matrix from eluted fractions to recover pure concentration and spectral profiles. Besides, possible solutions for resolved concentration and spectral profiles are investigated. The reaction-dispersive model as a mechanistic hard model for the column is utilized for the evaluation of the ion exchange chromatography. Using a genetic algorithm as a global optimization method, mobile phase modulator (MPM) adsorption model parameters such as ß, kdes,0, and Keq,0, were fitted to the concentration profiles from MCR-ALS as 1.96, 2.87×10-4 m3 mol-1s-1, and 1883, respectively. Furthermore, a new resampling incorporated non-parametric statistics is conducted to assess parameters' uncertainty. Values of 2.00, 1.10×10-3 m3 mol-1s-1, and 549.80 are estimated median, and values of 0.05, 2.5×10-3, and 691.00 are calculated interquartile range (IQR) for ß, kdes,0, and Keq,0, respectively. Finally, results show three and two outliers for ß and kdes,0, respectively.


Asunto(s)
Anticuerpos , Plasma , Cromatografía Líquida de Alta Presión , Cromatografía por Intercambio Iónico , Humanos , Análisis de los Mínimos Cuadrados
5.
Anal Chim Acta ; 1141: 36-46, 2021 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-33248660

RESUMEN

An approach is proposed and illustrated for the joint selection of essential samples and essential variables of a data matrix in the frame of spectral unmixing. These essential features carry the signals required to linearly recover all the information available in the rows and columns of a data set. Working with hyperspectral images, this approach translates into the selection of essential spectral pixels (ESPs) and essential spatial variables (ESVs). This results in a highly-reduced data set, the benefits of which can be minimized computational effort, meticulous data mining, easier model building as well as better problem understanding or interpretation. Working with both simulated and real data, we show that (i) reduction rates of over 99% can be typically obtained, (ii) multivariate curve resolution - alternating least squares (MCR-ALS) can be easily applied on the reduced data sets and (iii) the full distribution maps and spectral profiles can be readily obtained from the reduced profiles and the reduced data sets (without using the full data matrix).

6.
Anal Chim Acta ; 1129: 98-107, 2020 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-32891395

RESUMEN

Smartphones are state-of-the-art devices with several interesting features which make them promising for analytical purposes. After modification to a spectrophotometer (smart spectrophotometer), they can be utilized for the quantitative or qualitative applications. Although smartphones have widely been applied for sensing∖biosensing purposes, the error structure/type of their outputs remained unexplored. Error structure information values the objects/channels in a given data set and variables have the same importance when the noise has identical independent distribution (i.i.d). Otherwise, error structure weights them for further data analysis. In this contribution, a smartphone-based spectrophotometer was constructed integrating simple optical elements-a tungsten lamp as source and a piece of digital versatile disc (DVD) as a reflecting diffraction grating to investigate the error sources of the smartphone-spectrophotometer. For this purpose, error covariance matrices (ECMs) were calculated using a series of replication capturing error information. Afterwards, PCA and MCR-ALS were employed for the decomposition of the ECMs and resolved profiles were translated to the error types. Finally, proportional error as a heteroscedastic noise was highlighted as the most important source of variation in the error structure of the smartphone-based spectrophotometer.

7.
Anal Chim Acta ; 1125: 169-176, 2020 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-32674763

RESUMEN

Bilinear decomposition of an augmented data matrix is usually complicated by the phenomenon of rotational ambiguity. If the latter is significant, quantitative and qualitative information of the recovered profiles may be less useful. Although constraints can reduce the extent of feasible regions and the degree of rotational ambiguity, the estimation of initial parameters to start the decomposition is an important phase in multivariate curve resolution-alternating least-squares (MCR-ALS) studies. Dealing with a bilinear decomposition of an augmented data matrix where rotational ambiguity persists, the question remains whether it is possible to still develop a successful calibration protocol. Indeed, literature reports indicate that various analytical systems have been experimentally developed, in which substantial rotational ambiguity exists, yet the experimental results confirmed that accurate analyte quantitation was possible. In this research, we further investigate on the effect of the initialization step for a two-component second-order multivariate calibration with the extended bilinear model. It is shown that the selection strategy based on the so-called purest variables can be helpful in achieving a correct profile resolution, depending on which data direction it is applied. Finally, some data-driven guidelines for analytical chemists are suggested, to identify the potential degree of rotational ambiguity and the correct choice of the initialization strategy.

8.
Anal Chem ; 91(17): 10943-10948, 2019 09 03.
Artículo en Inglés | MEDLINE | ID: mdl-31361465

RESUMEN

We propose a methodology to select essential spectral pixels (ESPs) of chemical images. These pixels are on the outer envelope of the principal component scores of the data and can be identified by convex-hull computation. As ESPs carry all the linearly mixed spectral information, large hyperspectral images can be dramatically reduced before multivariate curve resolution (MCR) analysis. We investigated chemical images of different spectroscopies, sizes, and complexities and show that the analysis of full data sets of hundreds of thousands of spectral pixels only require a few tenths of them.

9.
J Fluoresc ; 29(2): 335-342, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30778897

RESUMEN

The 8-17E DNAzyme is a temperature-dependent DNA metalloenzyme catalyzing RNA trans esterification in the presence of Pb2+ metal ions. Labeling the stems of the substrate and DNAzyme with the Cy3 and Cy5 respectively, the considered DNAzyme was studied by the fluorescence spectroscopy. The temperature-dependent variability of the Pb2+-specific 8-17E DNAzyme catalytic sensor was investigated trough a number of successive temperature fluctuations from 4 to 25 °C to obtain information. Investigating underlined biochemical system reveals that in this sensor, free single strands Enzyme (Cy5-E) and Substrate (Cy3-S) have higher fluorescence intensities than hybridized forms, suggesting that the fluorophores are in a contact quenched. Increasing the temperature has three effects: 1) Fluorescence intensities for the free fluorophores were reduced, 2) stability of the hybridized form was reduced and cleavage of substrate in presence of Pb2+was occurred, and 3) conformation of ES hybridized form was changed (before cleavage). As a result of conformation changes in ES, S was more affected than E in the ES. Pb2+ ion shows quenching effect on both fluorophores and in the absence of N2(g) purge the effect was more considerable. A main goal that we had in mind was to find if significantly lower concentrations of Pb2+ and ES, compared to previous reports, can generate any observable cleavage in substrate. Analysis of the cleavage reaction for 50 nM ES indicates that S is cleaved at 25 °C in presence of N2(g) and 0.5 µM Pb2+, while in same condition no apparent change occurs in the 4 or 10 °C. The rapid, sensitive and low cost strategy presented here can be applicable to study temperature-dependent behavior of other nucleic acid-based biosensors.


Asunto(s)
Biocatálisis , Técnicas Biosensibles/métodos , ADN Catalítico/metabolismo , Plomo/análisis , Temperatura , Secuencia de Bases , ADN Catalítico/química , ADN Catalítico/genética , Esterificación , Plomo/química , Modelos Moleculares , Conformación de Ácido Nucleico , Hibridación de Ácido Nucleico , Espectrometría de Fluorescencia
10.
Comb Chem High Throughput Screen ; 21(2): 117-124, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29437001

RESUMEN

Aims & Scope: In this research, 8 variable selection approaches were used to investigate the effect of variable selection on the predictive power and stability of CoMFA models. MATERIALS & METHODS: Three data sets including 36 EPAC antagonists, 79 CD38 inhibitors and 57 ATAD2 bromodomain inhibitors were modelled by CoMFA. First of all, for all three data sets, CoMFA models with all CoMFA descriptors were created then by applying each variable selection method a new CoMFA model was developed so for each data set, 9 CoMFA models were built. Obtained results show noisy and uninformative variables affect CoMFA results. Based on created models, applying 5 variable selection approaches including FFD, SRD-FFD, IVE-PLS, SRD-UVEPLS and SPA-jackknife increases the predictive power and stability of CoMFA models significantly. RESULT & CONCLUSION: Among them, SPA-jackknife removes most of the variables while FFD retains most of them. FFD and IVE-PLS are time consuming process while SRD-FFD and SRD-UVE-PLS run need to few seconds. Also applying FFD, SRD-FFD, IVE-PLS, SRD-UVE-PLS protect CoMFA countor maps information for both fields.


Asunto(s)
Modelos Químicos , ADP-Ribosil Ciclasa 1/antagonistas & inhibidores , ATPasas Asociadas con Actividades Celulares Diversas/antagonistas & inhibidores , Acetilcisteína/análogos & derivados , Acetilcisteína/antagonistas & inhibidores , Algoritmos , Proteínas de Unión al ADN/antagonistas & inhibidores , Conjuntos de Datos como Asunto , Eritromicina/análogos & derivados , Eritromicina/antagonistas & inhibidores , Relación Estructura-Actividad Cuantitativa
11.
Anal Chim Acta ; 939: 42-53, 2016 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-27639142

RESUMEN

Although many efforts have been directed to the development of approximation methods for determining the extent of feasible regions in two- and three-way data sets; analytical determination (i.e. using only finite-step direct calculation(s) instead of the less exact numerical ones) of feasible regions in three-way arrays has remained unexplored. In this contribution, an analytical solution of trilinear decomposition is introduced which can be considered as a new direct method for the resolution of three-way two-component systems. The proposed analytical calculation method is applied to the full rank three-way data array and arrays with rank overlap (a type of rank deficiency) loadings in a mode. Close inspections of the analytically calculated feasible regions of rank deficient cases help us to make clearer the information gathered from multi-way problems frequently emerged in physics, chemistry, biology, agricultural, environmental and clinical sciences, etc. These examinations can also help to answer, e.g., the following practical question: "Is two-component three-way data with proportional loading in a mode actually a three-way data array?" By the aid of the additional information resulted from the investigated feasible regions of two-component three-way data arrays with proportional profile in a mode, reasons for the inadequacy of the seemingly trilinear data treatment methods published in the literature (e.g., U-PLS/RBL-LD that was used for extraction of quantitative and qualitative information reported by Olivieri et al. (Anal. Chem. 82 (2010) 4510-4519)) could be completely understood.


Asunto(s)
Estadística como Asunto/métodos , Técnicas de Química Analítica , Estudios de Factibilidad , Modelos Lineales , Modelos Teóricos
12.
Anal Chim Acta ; 855: 21-33, 2015 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-25542086

RESUMEN

Multivariate curve resolution methods, frequently used in analyzing bilinear data sets, result in ambiguous decomposition in general. Implementing the adequate constraints may lead to reduce the so-called rotational ambiguity drastically, and in the most favorable cases to the unique solution. However, in some special cases, non-negativity constraint as minimal information of the system is a sufficient condition to resolve profiles uniquely. Although, several studies on exploring the uniqueness of the bilinear non-negatively constrained multivariate curve resolution methods have been made in the literature, it has still remained a mysterious question. In 1995, Manne published his profile-based theorems giving the necessary and sufficient conditions of the unique resolution. In this study, a new term, i.e., data-based uniqueness is defined and investigated in details, and a general procedure is suggested for detection of uniquely recovered profile(s) on the basis of data set structure in the abstract space. Close inspection of Borgen plots of these data sets leads to realize the comprehensive information of local rank, and these argumentations furnish a basis for data-based uniqueness theorem. The reported phenomenon and its exploration is a new stage (it can be said fundament) in understanding and describing the bilinear (matrix-type) chemical data in general. Our proposed detection tool is restricted to three-component systems because of the visual limitations of the Borgen plot, but the theorem is universal for systems with more than three components. A recently published experimental four-component system is used for illustrating this theorem in the case of systems with more than three components.

13.
Anal Chim Acta ; 782: 12-20, 2013 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-23708279

RESUMEN

Unambiguous recovery of profiles is a distinguishable advantage of Parallel Factor Analysis (PARAFAC) as a trilinear model and has made it a promising exploratory tool for data analysis. Linear dependency in profiles destroys trilinearity and will increase ambiguity in the curve resolution of three-way data sets. PARAFAC uniqueness deteriorates totally or partially in data sets with linearly dependent loadings. Exploiting a reliable method for determination and direct visualization of feasible bands in the PARAFAC model can be helpful not only in full characterization of uniqueness conditions but also in the investigation of the effects of constraints on the PARAFAC feasible solutions. The purpose of this paper is twofold. First, the calculation of rotational ambiguity in the PARAFAC model extends to three components system. The principle behind the algorithm is described in detail and tested for simulated and real data sets. Completely general and thoroughly investigated results are presented for the three component cases. Secondly, the effects of selective regions in the profiles on the resolution of systems that suffered from the rank deficiency problem, due to rank overlap, are emphasized. In the case of two-way data sets the effect of selectivity constraint on the unique recovery of profiles was investigated and applied. However, to our knowledge, in this report, for the first time, the effect of the presence of selective windows in the profiles, on the unique resolution of three-way data sets has been systematically investigated.

14.
J Chem Inf Model ; 50(12): 2055-66, 2010 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-21069957

RESUMEN

This study is an implementation of a robust jackknife-based descriptor selection procedure assisted with Gram-Schmidt orthogonalization. Selwood data including 31 molecules and 53 descriptors was considered in this study. Both multiple linear regression (MLR) and partial least squares (PLS) regression methods were applied during the jackknife procedures, and the desired results were obtained when using PLS regression on both autoscaled and orthogonalized data sets. Having used the Gram-Schmidt technique, descriptors were all orthogonalized, and their number was reduced to 30. A reproducible set of descriptors was obtained when PLS-jackknife was applied to the Gram-Schmidt orthogonalized data. The simple statistical t-test was applied to determine the significance of the obtained regression coefficients from jackknife resampling.Increasing the sample size, descriptors, based on their information content, were introduced into the model one by one and were sorted. The number of validated descriptors was in proportion with the sample size in the jackknife. The PLS-jackknife parameters, such as sample size and number and number of latent variables in PLS, and the starting descriptor in Gram-Schmidt orthogonalization were investigated and optimized.Applying PLS-jackknife to orthogonalized data in the optimized condition, five descriptors were validated with q²TOT2 ) 0.693 and R² ) 0.811. Compared to the previous reports, the obtained results are satisfactory.


Asunto(s)
Algoritmos , Relación Estructura-Actividad Cuantitativa , Análisis de los Mínimos Cuadrados
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...