Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 14(1): 65, 2023 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-36599837

RESUMEN

Phagocytic particle uptake is crucial for the fate of both living cells and pathogens. Invading particles have to overcome fluctuating lipid membranes as the first physical barrier. However, the energy and the role of the fluctuation-based particle-membrane interactions during particle uptake are not understood. We tackle this problem by indenting the membrane of differently composed Giant Unilamellar Vesicles (GUVs) with optically trapped particles until particle uptake. By continuous 1 MHz tracking and autocorrelating the particle's positions within 30µs delays for different indentations, the fluctuations' amplitude, the damping, the mean forces, and the energy profiles were obtained. Remarkably, the uptake energy into a GUV becomes predictable since it increases for smaller fluctuation amplitudes and longer relaxation time. Our observations could be explained by a mathematical model based on continuous suppression of fluctuation modes. Hence, the reduced particle uptake energy for protein-ligand interactions LecA-Gb3 or Biotin-Streptavidin results also from pronounced, low-friction membrane fluctuations.


Asunto(s)
Modelos Teóricos , Liposomas Unilamelares , Transporte Biológico , Fagocitosis , Lípidos
2.
Pharmaceutics ; 15(1)2023 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-36678854

RESUMEN

Receptor-mediated transcytosis is an elegant and promising strategy for drug delivery across biological barriers. Here, we describe a novel ligand-receptor pair based on a dimeric, engineered derivative of the Pseudomonas aeruginosa lectin LecA, here termed Di-LecA, and the host cell glycosphingolipid Gb3. We characterized the trafficking kinetics and transcytosis efficiencies in polarized Gb3-positive and -negative MDCK cells using mainly immunofluorescence in combination with confocal microscopy. To evaluate the delivery capacity of dimeric LecA chimeras, EGFP was chosen as a fluorescent model protein representing macromolecules, such as antibody fragments, and fused to either the N- or C-terminus of monomeric LecA using recombinant DNA technology. Both LecA/EGFP fusion proteins crossed cellular monolayers in vitro. Of note, the conjugate with EGFP at the N-terminus of LecA (EGFP-LecA) showed a higher release rate than the conjugate with EGFP at the C-terminus (LecA-EGFP). Based on molecular dynamics simulations and cross-linking studies of giant unilamellar vesicles, we speculate that EGFP-LecA tends to be a dimer while LecA-EGFP forms a tetramer. Overall, we confidently propose the dimeric LecA chimeras as transcytotic drug delivery tools through Gb3-positive cellular barriers for future in vivo tests.

3.
Cell Rep ; 41(3): 111510, 2022 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-36261008

RESUMEN

Septin GTPases polymerize into higher-ordered structures as a part of the cytoskeleton and are involved in interactions of the host with a wide spectrum of pathogens. Many pathogens foster an ambiguous relationship with septins. They exploit septins for uptake, but septins also prevent their intracellular replication and target them for autophagy. We demonstrate that septins are involved in a defense mechanism against the pathogen Pseudomonas aeruginosa, which enters cells via a lipid zippering mechanism relying on interaction of the lectin LecA with the glycosphingolipid Gb3 on the host membrane. LecA-dependent invagination of the plasma membrane triggers septin recruitment to the site of bacterial attachment. We also find a septin-dependent reinforcement of cortical actin at attachment sites. Atomic force microscopy reveals formation of a septin-dependent rigid barrier below the membrane, preventing bacterial penetration. Our data suggest that septin barriers represent a cellular defense against bacteria inducing membrane curvature for invasion.


Asunto(s)
Pseudomonas aeruginosa , Septinas , Animales , Septinas/metabolismo , Pseudomonas aeruginosa/metabolismo , Actinas/metabolismo , Glicoesfingolípidos/metabolismo , Lectinas/metabolismo , Mamíferos/metabolismo
4.
Nanoscale ; 13(7): 4016-4028, 2021 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-33503085

RESUMEN

Interactions of the bacterial lectin LecA with the host cells glycosphingolipid Gb3 have been shown to be crucial for the cellular uptake of the bacterium Pseudomonas aeruginosa. LecA-induced Gb3 clustering, referred to as lipid zipper mechanism, leads to full membrane engulfment of the bacterium. Here, we aim for a nanoscale force characterization of this mechanism using two complementary force probing techniques, atomic force microscopy (AFM) and optical tweezers (OT). The LecA-Gb3 interactions are reconstituted using giant unilamellar vesicles (GUVs), a well-controlled minimal system mimicking the plasma membrane and nanoscale forces between either bacteria (PAO1 wild-type and LecA-deletion mutant strains) or LecA-coated probes (as minimal, synthetic bacterial model) and vesicles are measured. LecA-Gb3 interactions strengthen the bacterial attachment to the membrane (1.5-8-fold) depending on the membrane tension and the applied technique. Moreover, significantly less energy (reduction up to 80%) is required for the full uptake of LecA-coated beads into Gb3-functionalized vesicles. This quantitative approach highlights that lectin-glycolipid interactions provide adequate forces and energies to drive bacterial attachment and uptake.


Asunto(s)
Adhesinas Bacterianas , Lectinas , Adhesinas Bacterianas/metabolismo , Transporte Biológico , Membrana Celular/metabolismo , Lectinas/metabolismo , Pseudomonas aeruginosa/metabolismo , Liposomas Unilamelares/metabolismo
5.
Int J Nanomedicine ; 15: 4333-4350, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32606681

RESUMEN

BACKGROUND: Different diseases affect both mechanical and chemical features of the involved tissue, enhancing the symptoms. METHODS: In this study, using atomic force microscopy, we mechanically characterized human ovarian tissues with four distinct pathological conditions: mucinous, serous, and mature teratoma tumors, and non-tumorous endometriosis. Mechanical elasticity profiles were quantified and the resultant data were categorized using K-means clustering method, as well as fuzzy C-means, to evaluate elastic moduli of cellular and non-cellular parts of diseased tissues and compare them among four disease conditions. Samples were stained by hematoxylin-eosin staining to further study the content of different locations of tissues. RESULTS: Pathological state vastly influenced the mechanical properties of the ovarian tissues. Significant alterations among elastic moduli of both cellular and non-cellular parts were observed. Mature teratoma tumors commonly composed of multiple cell types and heterogeneous ECM structure showed the widest range of elasticity profile and the stiffest average elastic modulus of 14 kPa. Samples of serous tumors were the softest tissues with elastic modulus of only 400 Pa for the cellular part and 5 kPa for the ECM. Tissues of other two diseases were closer in mechanical properties as mucinous tumors were insignificantly stiffer than endometriosis in cellular part, 1300 Pa compared to 1000 Pa, with the ECM average elastic modulus of 8 kPa for both. CONCLUSION: The higher incidence of carcinoma out of teratoma and serous tumors may be related to the intense alteration of mechanical features of the cellular and the ECM, serving as a potential risk factor which necessitates further investigation.


Asunto(s)
Microscopía de Fuerza Atómica , Nanopartículas/química , Ovario/patología , Ovario/ultraestructura , Adulto , Fenómenos Biomecánicos , Módulo de Elasticidad , Matriz Extracelular/metabolismo , Femenino , Humanos , Persona de Mediana Edad
6.
Sci Rep ; 10(1): 9752, 2020 06 16.
Artículo en Inglés | MEDLINE | ID: mdl-32546842

RESUMEN

The two lectins LecA from Pseudomonas aeruginosa and the B-subunit of Shiga toxin from Shigella dysenteriae (StxB) share the glycosphingolipid globotriaosylceramide (Gb3) as receptor. Counterintuitively, we found that LecA and StxB segregated into different domains after recognizing Gb3 at the plasma membrane of cells. We hypothesized that the orientation of the carbohydrate head group of Gb3 embedded in the lipid bilayer differentially influences LecA and StxB binding. To test this hypothesis, we reconstituted lectin-Gb3 interaction using giant unilamellar vesicles and were indeed able to rebuild LecA and StxB segregation. Both, the Gb3 fatty acyl chain structure and the local membrane environment, modulated Gb3 recognition by LecA and StxB. Specifically, StxB preferred more ordered membranes compared to LecA. Based on our findings, we propose comparing staining patterns of LecA and StxB as an alternative method to assess membrane order in cells. To verify this approach, we re-established that the apical plasma membrane of epithelial cells is more ordered than the basolateral plasma membrane. Additionally, we found that StxB recognized Gb3 at the primary cilium and the periciliary membrane, whereas LecA only bound periciliary Gb3. This suggests that the ciliary membrane is of higher order than the surrounding periciliary membrane.


Asunto(s)
Adhesinas Bacterianas/metabolismo , Unión Proteica/fisiología , Toxinas Shiga/metabolismo , Adhesinas Bacterianas/fisiología , Membrana Celular/metabolismo , Células Epiteliales/metabolismo , Glicoesfingolípidos/metabolismo , Lectinas/metabolismo , Lectinas/fisiología , Ligandos , Membrana Dobles de Lípidos/química , Unión Proteica/genética , Pseudomonas aeruginosa , Toxina Shiga/metabolismo , Shigella dysenteriae , Trihexosilceramidas/metabolismo , Liposomas Unilamelares/metabolismo
7.
Front Physiol ; 11: 457, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32499717

RESUMEN

The healthy heart adapts continuously to a complex set of dynamically changing mechanical conditions. The mechanical environment is altered by, and contributes to, multiple cardiac diseases. Mechanical stimuli are detected and transduced by cellular mechano-sensors, including stretch-activated ion channels (SAC). The precise role of SAC in the heart is unclear, in part because there are few SAC-specific pharmacological modulators. That said, most SAC can be activated by inducers of membrane curvature. The lectin LecA is a virulence factor of Pseudomonas aeruginosa and essential for P. aeruginosa-induced membrane curvature, resulting in formation of endocytic structures and bacterial cell invasion. We investigate whether LecA modulates SAC activity. TREK-1 and Piezo1 have been selected, as they are widely expressed in the body, including cardiac tissue, and they are "canonical representatives" for the potassium selective and the cation non-selective SAC families, respectively. Live cell confocal microscopy and electron tomographic imaging were used to follow binding dynamics of LecA, and to track changes in cell morphology and membrane topology in human embryonic kidney (HEK) cells and in giant unilamellar vesicles (GUV). HEK cells were further transfected with human TREK-1 or Piezo1 constructs, and ion channel activity was recorded using the patch-clamp technique. Finally, freshly isolated cardiac cells were used for studies into cell type dependency of LecA binding. LecA (500 nM) binds within seconds to the surface of HEK cells, with highest concentration at cell-cell contact sites. Local membrane invaginations are detected in the presence of LecA, both in the plasma membrane of cells (by 17 min of LecA exposure) as well as in GUV. In HEK cells, LecA sensitizes TREK-1, but not Piezo1, to voltage and mechanical stimulation. In freshly isolated cardiac cells, LecA binds to non-myocytes, but not to ventricular or atrial cardiomyocytes. This cell type specific lack of binding is observed across cardiomyocytes from mouse, rabbit, pig, and human. Our results suggest that LecA may serve as a pharmacological tool to study SAC in a cell type-preferential manner. This could aid tissue-based research into the roles of SAC in cardiac non-myocytes.

8.
Interface Focus ; 9(2): 20180084, 2019 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-30842879

RESUMEN

In synthetic biology approaches, lipid vesicles are widely used as protocell models. While many compounds have been encapsulated in vesicles (e.g. DNA, cytoskeleton and enzymes), the incorporation of glycocalyx components in the lipid bilayer has attracted much less attention so far. In recent years, glycoconjugates have been integrated in the membrane of giant unilamellar vesicles (GUVs). These minimal membrane systems have largely contributed to shed light on the molecular mechanisms of cellular processes. In this review, we first introduce several preparation and biophysical characterization methods of GUVs. Then, we highlight specific applications of protocells investigating glycolipid-mediated endocytosis of toxins, viruses and bacteria. In addition, we delineate how prototissues have been assembled from glycan-decorated protocells by using lectin-mediated cross-linking of opposed glycoreceptors (e.g. glycolipids and glycopeptides). In future applications, glycan-decorated protocells might be useful for investigating cell-cell interactions (e.g. adhesion and communication). We also speculate about the implication of lectin-glycoreceptor interactions in membrane fusion processes.

9.
Bioinformatics ; 35(13): 2340-2342, 2019 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-30475993

RESUMEN

MOTIVATION: Giant Unilamellar Vesicles (GUVs) are widely used synthetic membrane systems that mimic native membranes and cellular processes. Various fluorescence imaging techniques can be employed for their characterization. In order to guarantee a fast and unbiased analysis of imaging data, the development of automated recognition and processing steps is required. RESULTS: We developed a fast and versatile Fiji-based macro for the analysis of digital microscopy images of GUVs. This macro was designed to investigate membrane dye incorporation and protein binding to membranes. Moreover, we propose a fluorescence intensity-based method to quantitatively assess protein binding. AVAILABILITY AND IMPLEMENTATION: The ImageJ distribution package FIJI is freely available online: https://imagej.net/Fiji. The macro file GUV-AP.ijm is available at https://github.com/AG-Roemer/GUV-AP. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
Liposomas Unilamelares
10.
Proc Inst Mech Eng H ; 232(5): 531-541, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-29609522

RESUMEN

Vascular endothelium is continuously subjected to mechanical stimulation in the form of shear forces due to blood flow as well as tensile forces as a consequence of blood pressure. Such stimuli influence endothelial behavior and regulate cell-tissue interaction for an optimized functionality. This study aimed to quantify influence of cyclic stretch on the adhesive property and stiffness of endothelial cells. The 10% cyclic stretch with frequency of 1 Hz was applied to a layer of endothelial cells cultured on a polydimethylsiloxane substrate. Cell-substrate adhesion of endothelial cells was examined by the novel approach of atomic force microscope-based single-cell force spectroscopy and cell stiffness was measured by atomic force microscopy. Furthermore, the adhesive molecular bonds were evaluated using modified Hertz contact theory. Our results show that overall adhesion of endothelial cells with substrate decreased after cyclic stretch while they became stiffer. Based on the experimental results and theoretical modeling, the decrease in the number of molecular bonds after cyclic stretch was quantified. In conclusion, in vitro cyclic stretch caused alterations in both adhesive capacity and elastic modulus of endothelial cells through mechanotransductive pathways as two major determinants of the function of these cells within the cardiovascular system.


Asunto(s)
Adhesión Celular , Colágeno/metabolismo , Células Endoteliales de la Vena Umbilical Humana/citología , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Fenómenos Mecánicos , Fenómenos Biomecánicos , Módulo de Elasticidad , Humanos
11.
Mol Cell Biochem ; 423(1-2): 129-139, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27696309

RESUMEN

Loss of cell-cell adhesion function is a common characteristic of many human epithelial carcinomas that is frequently due to loss of E-cadherin expression. In cancer progression, loss of E-cadherin is associated with invasion and metastasis potential, hence restoration of its function may contribute to the metastasis inhibition. This study examined effect of Epidermal Growth Factor Receptor (EGFR/Her1) blockade on the E-cadherin expression, cellular adherence, and cell elasticity in two human epithelial cancer cell lines, MCF7 and A431. EGFR blocking agents as antibodies or small molecules target EGFR directly. Furthermore, due to intracellular signaling pathways they influence cell behavior and activities. The idea here is to investigate the effect of reduced activity of this signaling pathway using anti-EGFR Antibody (Cetuximab) and tyrosine kinase inhibitor (Lapatinib) on cell-cell adhesion and cell mechanical properties. Real-Time PCR analysis demonstrated that treatment of cells with considered drugs increased the expression of E-cadherin gene among samples. The atomic force microscopy-based single cell force spectroscopy technique was used to measure adhesive force of cancerous cells. Results indicated that inhibition of EGFR activity elevated cell-cell adhesion force, accompanied by stiffening of the cell bodies. In summary, Cetuximab and Lapatinib have been found to mediate cell-cell adhesion by restoration of E-cadherin expression and function. Our data suggest possible therapeutic potential for inhibition of metastasis via the blockade of EGFR signaling.


Asunto(s)
Neoplasias de la Mama , Cetuximab/farmacología , Receptores ErbB/metabolismo , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Proteínas de Neoplasias/metabolismo , Quinazolinas/farmacología , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/ultraestructura , Adhesión Celular/efectos de los fármacos , Femenino , Humanos , Lapatinib , Células MCF-7 , Microscopía de Fuerza Atómica
12.
J Mech Behav Biomed Mater ; 60: 234-242, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-26878463

RESUMEN

Different behaviors of cells such as growth, differentiation and apoptosis widely differ in case of diseases. The mechanical properties of cells and tissues can be used as a clue for diagnosis of pathological conditions. Here, we implemented Atomic Force Microscopy to evaluate the extent of alteration in mechanical stiffness of tissue layers from patients affected by breast cancer and investigated how data can be categorized based on pathological observations. To avoid predefined categories, Fuzzy-logic algorithm as a novel method was used to divide and categorize the derived Young׳s modulus coefficients (E). Such algorithm divides data among groups in such way that data of each group are mostly similar while dissimilar with other groups. The algorithm was run for different number of categories. Results showed that three (followed by two with small difference) groups categorized data best. Three categories were defined as (E<3000Pa, 30007000Pa) among which data were allocated. The first cluster was assumed as the cellular region while the last cluster was referred to the fibrous parts of the tissue. The intermediate region was due to other non-cellular parts. Results indicated 50% decline of average Young׳s modulus of cellular region of cancerous tissues compared to healthy tissues. The average Young׳s modulus of non-cellular area of normal tissues was slightly lower than that of cancerous tissues, although the difference was not statistically different. Through clustering, the measured Young׳s moduli of different locations of cancerous tissues, a quantified approach was developed to analyze changes in elastic modulus of a spectrum of components of breast tissue which can be applied in diagnostic mechanisms of cancer development, since in cancer progression the softening cell body facilitates the migration of cancerous cells through the original tumor and endothelial junctions.


Asunto(s)
Neoplasias de la Mama/patología , Mama/patología , Módulo de Elasticidad , Microscopía de Fuerza Atómica , Femenino , Humanos
13.
Cell Commun Adhes ; 22(2-6): 79-89, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-27960555

RESUMEN

Although substrate stiffness has been previously reported to affect various cellular aspects, such as morphology, migration, viability, growth, and cytoskeletal structure, its influence on cell adherence has not been well examined. Here, we prepared three soft, medium, and hard polyacrylamide (PAAM) substrates and utilized AFM to study substrate elasticity and also the adhesion and mechanical properties of endothelial cells in response to changing substrate stiffness. Maximum detachment force and cell stiffness were increased with increasing substrate stiffness. Maximum detachment force values were 0.28 ± 0.14, 0.94 ± 0.27, and 1.99 ± 0.59 nN while Young's moduli of cells were 218.85 ± 38.73, 385.58 ± 131.67, and 933.20 ± 428.92 Pa for soft, medium, and hard substrates, respectively. Human umbilical vein endothelial cells (HUVECs) showed round to more spread shapes on soft to hard substrates, with the most organized and elongated actin structure on the hard hydrogel. Our results confirm the importance of substrate stiffness in regulating cell mechanics and adhesion for a successful cell therapy.


Asunto(s)
Citoesqueleto/metabolismo , Módulo de Elasticidad/fisiología , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Resinas Acrílicas/metabolismo , Actinas/metabolismo , Adhesión Celular , Células Endoteliales de la Vena Umbilical Humana/citología , Humanos , Microscopía de Fuerza Atómica/métodos
14.
J Biomech ; 47(13): 3373-9, 2014 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-25169659

RESUMEN

The adhesiveness of cancerous cells to their neighboring cells significantly contributes to tumor progression and metastasis. The single-cell force spectroscopy (SCFS) approach was implemented to survey the cell-cell adhesion force between cancerous cells in three cancerous breast cell lines (MCF-7, T47D, and MDA-MB-231). The gene expression levels of two dominant cell adhesion markers (E-cadherin and N-cadherin) were quantified by real-time PCR. Additionally, the local stiffness of the cell bodies was measured by atomic force microscopy (AFM), and the actin cytoskeletal organization was examined by confocal microscopy. Results indicated that the adhesion force between cells was conversely correlated with their invasion potential. The highest adhesion force was observed in the MCF-7 cells. A reduction in cell-cell adhesion, which is required for the detachment of cells from the main tumor during metastasis, is partly due to the loss of E-cadherin expression and the enhanced expression of N-cadherins. The reduced adhesion was accompanied by the softening of cells, as described by the rearrangement of actin filaments through confocal microscopy observations. The softening of the cell body and the reduced cellular adhesiveness are two adaptive mechanisms through which malignant cells achieve the increased deformability, motility, and strong metastasis potential necessary for passage through endothelial junctions and positioning in host tissue. This study presented application of SCFS to survey cell phenotype transformation during cancer progression. The results can be implemented as a platform for further investigations that target the manipulation of cellular adhesiveness and stiffness as a therapeutic choice.


Asunto(s)
Neoplasias de la Mama/patología , Microscopía de Fuerza Atómica , Citoesqueleto de Actina/metabolismo , Cadherinas/genética , Adhesión Celular , Línea Celular Tumoral , Movimiento Celular , Módulo de Elasticidad , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Invasividad Neoplásica , Reacción en Cadena en Tiempo Real de la Polimerasa , Análisis de la Célula Individual
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA