Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
medRxiv ; 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38633770

RESUMEN

The human retina is part of the central nervous system and can be easily and non-invasively imaged with optical coherence tomography. While imaging the retina may provide insights on central nervous system-related disorders such as schizophrenia, a typical challenge are confounders often present in schizophrenia which may negatively impact retinal health. Here, we therefore aimed to investigate retinal changes in the context of common genetic variations conveying a risk of schizophrenia as measured by polygenic risk scores. We used population data from the UK Biobank, including White British and Irish individuals without diagnosed schizophrenia, and estimated a polygenic risk score for schizophrenia based on the newest genome-wide association study (PGC release 2022). We hypothesized that greater genetic susceptibility to schizophrenia is associated with retinal thinning, especially within the macula. To gain additional mechanistic insights, we conducted pathway-specific polygenic risk score associations analyses, focusing on gene pathways that are related to schizophrenia. Of 65484 individuals recruited, 48208 participants with available matching imaging-genetic data were included in the analysis of whom 22427 (53.48%) were female and 25781 (46.52%) were male. Our robust principal component regression results showed that polygenic risk scores for schizophrenia were associated with retinal thinning while controlling for confounding factors (b = -0.03, p = 0.007, pFWER = 0.01). Similarly, we found that polygenic risk for schizophrenia specific to neuroinflammation gene sets revealed significant associations with retinal thinning (b = -0.03, self-contained p = 0.041 (reflecting the level of association), competitive p = 0.05 (reflecting the level of enrichment)). These results go beyond previous studies suggesting a relationship between manifested schizophrenia and retinal phenotypes. They indicate that the retina is a mirror reflecting the genetic complexities of schizophrenia and that alterations observed in the retina of individuals with schizophrenia may be connected to an inherent genetic predisposition to neurodegenerative aspects of the condition. These associations also suggest the potential involvement of the neuroinflammatory pathway, with indications of genetic overlap with specific retinal phenotypes. The findings further indicate that this gene pathway in individuals with a high polygenic risk for schizophrenia could contribute through acute-phase proteins to structural changes in the retina.

2.
Mol Psychiatry ; 2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38671214

RESUMEN

Formal thought disorder (FTD) is a clinical key factor in schizophrenia, but the neurobiological underpinnings remain unclear. In particular, the relationship between FTD symptom dimensions and patterns of regional brain volume loss in schizophrenia remains to be established in large cohorts. Even less is known about the cellular basis of FTD. Our study addresses these major obstacles by enrolling a large multi-site cohort acquired by the ENIGMA Schizophrenia Working Group (752 schizophrenia patients and 1256 controls), to unravel the neuroanatomy of FTD in schizophrenia and using virtual histology tools on implicated brain regions to investigate the cellular basis. Based on the findings of previous clinical and neuroimaging studies, we decided to separately explore positive, negative and total formal thought disorder. We used virtual histology tools to relate brain structural changes associated with FTD to cellular distributions in cortical regions. We identified distinct neural networks positive and negative FTD. Both networks encompassed fronto-occipito-amygdalar brain regions, but positive and negative FTD demonstrated a dissociation: negative FTD showed a relative sparing of orbitofrontal cortical thickness, while positive FTD also affected lateral temporal cortices. Virtual histology identified distinct transcriptomic fingerprints associated for both symptom dimensions. Negative FTD was linked to neuronal and astrocyte fingerprints, while positive FTD also showed associations with microglial cell types. These results provide an important step towards linking FTD to brain structural changes and their cellular underpinnings, providing an avenue for a better mechanistic understanding of this syndrome.

3.
bioRxiv ; 2023 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-37961617

RESUMEN

Objective: Schizophrenia is a multifaceted disorder associated with structural brain heterogeneity. Despite its relevance for identifying illness subtypes and informative biomarkers, structural brain heterogeneity in schizophrenia remains incompletely understood. Therefore, the objective of this study was to provide a comprehensive insight into the structural brain heterogeneity associated with schizophrenia. Methods: This meta- and mega-analysis investigated the variability of multimodal structural brain measures of white and gray matter in individuals with schizophrenia versus healthy controls. Using the ENIGMA dataset of MRI-based brain measures from 22 international sites with up to 6139 individuals for a given brain measure, we examined variability in cortical thickness, surface area, folding index, subcortical volume and fractional anisotropy. Results: We found that individuals with schizophrenia are distinguished by higher heterogeneity in the frontotemporal network with regard to multimodal structural measures. Moreover, individuals with schizophrenia showed higher homogeneity of the folding index, especially in the left parahippocampal region. Conclusions: Higher multimodal heterogeneity in frontotemporal regions potentially implies different subtypes of schizophrenia that converge on impaired frontotemporal interaction as a core feature of the disorder. Conversely, more homogeneous folding patterns in the left parahippocampal region might signify a consistent characteristic of schizophrenia shared across subtypes. These findings underscore the importance of structural brain variability in advancing our neurobiological understanding of schizophrenia, and aid in identifying illness subtypes as well as informative biomarkers.

4.
Res Sq ; 2023 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-37841855

RESUMEN

Formal thought disorder (FTD) is a key clinical factor in schizophrenia, but the neurobiological underpinnings remain unclear. In particular, relationship between FTD symptom dimensions and patterns of regional brain volume deficiencies in schizophrenia remain to be established in large cohorts. Even less is known about the cellular basis of FTD. Our study addresses these major obstacles based on a large multi-site cohort through the ENIGMA Schizophrenia Working Group (752 individuals with schizophrenia and 1256 controls), to unravel the neuroanatomy of positive, negative and total FTD in schizophrenia and their cellular bases. We used virtual histology tools to relate brain structural changes associated with FTD to cellular distributions in cortical regions. We identified distinct neural networks for positive and negative FTD. Both networks encompassed fronto-occipito-amygdalar brain regions, but negative FTD showed a relative sparing of orbitofrontal cortical thickness, while positive FTD also affected lateral temporal cortices. Virtual histology identified distinct transcriptomic fingerprints associated for both symptom dimensions. Negative FTD was linked to neuronal and astrocyte fingerprints, while positive FTD was also linked to microglial cell types. These findings relate different dimensions of FTD to distinct brain structural changes and their cellular underpinnings, improve our mechanistic understanding of these key psychotic symptoms.

5.
medRxiv ; 2023 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-37333179

RESUMEN

Formal thought disorder (FTD) is a key clinical factor in schizophrenia, but the neurobiological underpinnings remain unclear. In particular, relationship between FTD symptom dimensions and patterns of regional brain volume deficiencies in schizophrenia remain to be established in large cohorts. Even less is known about the cellular basis of FTD. Our study addresses these major obstacles based on a large multi-site cohort through the ENIGMA Schizophrenia Working Group (752 individuals with schizophrenia and 1256 controls), to unravel the neuroanatomy of positive, negative and total FTD in schizophrenia and their cellular bases. We used virtual histology tools to relate brain structural changes associated with FTD to cellular distributions in cortical regions. We identified distinct neural networks for positive and negative FTD. Both networks encompassed fronto-occipito-amygdalar brain regions, but negative FTD showed a relative sparing of orbitofrontal cortical thickness, while positive FTD also affected lateral temporal cortices. Virtual histology identified distinct transcriptomic fingerprints associated for both symptom dimensions. Negative FTD was linked to neuronal and astrocyte fingerprints, while positive FTD was also linked to microglial cell types. These findings relate different dimensions of FTD to distinct brain structural changes and their cellular underpinnings, improve our mechanistic understanding of these key psychotic symptoms.

6.
Nat Commun ; 10(1): 4812, 2019 10 23.
Artículo en Inglés | MEDLINE | ID: mdl-31645554

RESUMEN

Neuronal networks of the mammalian motor cortex (M1) are important for dexterous control of limb joints. Yet it remains unclear how encoding of joint movement in M1 depends on varying environmental contexts. Using calcium imaging we measured neuronal activity in layer 2/3 of the M1 forelimb region while mice grasped regularly or irregularly spaced ladder rungs during locomotion. We found that population coding of forelimb joint movements is sparse and varies according to the flexibility demanded from individual joints in the regular and irregular context, even for equivalent grasping actions across conditions. This context-dependence of M1 encoding emerged during task learning, fostering higher precision of grasping actions, but broke apart upon silencing of projections from secondary motor cortex (M2). These findings suggest that M1 exploits information from M2 to adapt encoding of joint movements to the flexibility demands of distinct familiar contexts, thereby increasing the accuracy of motor output.


Asunto(s)
Miembro Anterior , Fuerza de la Mano , Articulaciones/fisiología , Locomoción/fisiología , Corteza Motora/fisiología , Neuronas/fisiología , Animales , Ratones , Corteza Motora/diagnóstico por imagen , Imagen Óptica , Optogenética , Rango del Movimiento Articular
7.
JAMA Neurol ; 75(1): 114-118, 2018 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-29114733

RESUMEN

Importance: Sleep-wake disorders are a common and debilitating nonmotor manifestation of Parkinson disease (PD), but treatment options are scarce. Objective: To determine whether nocturnal administration of sodium oxybate, a first-line treatment in narcolepsy, is effective and safe for excessive daytime sleepiness (EDS) and disturbed nighttime sleep in patients with PD. Design, Setting, and Participants: Randomized, double-blind, placebo-controlled, crossover phase 2a study carried out between January 9, 2015, and February 24, 2017. In a single-center study in the sleep laboratory at the University Hospital Zurich, Zurich, Switzerland, 18 patients with PD and EDS (Epworth Sleepiness Scale [ESS] score >10) were screened in the sleep laboratory. Five patients were excluded owing to the polysomnographic diagnosis of sleep apnea and 1 patient withdrew consent. Thus, 12 patients were randomized to a treatment sequence (sodium oxybate followed by placebo or placebo followed by sodium oxybate, ratio 1:1) and, after dropout of 1 patient owing to an unrelated adverse event during the washout period, 11 patients completed the study. Two patients developed obstructive sleep apnea during sodium oxybate treatment (1 was the dropout) and were excluded from the per-protocol analysis (n = 10) but included in the intention-to-treat analysis (n = 12). Interventions: Nocturnal sodium oxybate and placebo taken at bedtime and 2.5 to 4.0 hours later with an individually titrated dose between 3.0 and 9.0 g per night for 6 weeks with a 2- to 4-week washout period interposed. Main Outcomes and Measures: Primary outcome measure was change of objective EDS as electrophysiologically measured by mean sleep latency in the Multiple Sleep Latency Test. Secondary outcome measures included change of subjective EDS (ESS), sleep quality (Parkinson Disease Sleep Scale-2), and objective variables of nighttime sleep (polysomnography). Results: Among 12 patients in the intention-to-treat population (10 men, 2 women; mean [SD] age, 62 [11.1] years; disease duration, 8.4 [4.6] years), sodium oxybate substantially improved EDS as measured objectively (mean sleep latency, +2.9 minutes; 95% CI, 2.1 to 3.8 minutes; P = .002) and subjectively (ESS score, -4.2 points ; 95% CI, -5.3 to -3.0 points; P = .001). Thereby, 8 (67%) patients exhibited an electrophysiologically defined positive treatment response. Moreover, sodium oxybate significantly enhanced subjective sleep quality and objectively measured slow-wave sleep duration (+72.7 minutes; 95% CI, 55.7 to 89.7 minutes; P < .001). Differences were more pronounced in the per-protocol analysis. Sodium oxybate was generally well tolerated under dose adjustments (no treatment-related dropouts), but it induced de novo obstructive sleep apnea in 2 patients and parasomnia in 1 patient, as detected by polysomnography, all of whom did not benefit from sodium oxybate treatment. Conclusions and Relevance: This study provides class I evidence for the efficacy of sodium oxybate in treating EDS and nocturnal sleep disturbance in patients with PD. Special monitoring with follow-up polysomnography is necessary to rule out treatment-related complications and larger follow-up trials with longer treatment durations are warranted for validation. Trial Registration: clinicaltrials.gov Identifier: NCT02111122.


Asunto(s)
Adyuvantes Anestésicos/uso terapéutico , Enfermedad de Parkinson/complicaciones , Trastornos del Sueño-Vigilia/tratamiento farmacológico , Trastornos del Sueño-Vigilia/etiología , Oxibato de Sodio/uso terapéutico , Anciano , Estudios Cruzados , Método Doble Ciego , Femenino , Humanos , Masculino , Persona de Mediana Edad , Polisomnografía , Resultado del Tratamiento
8.
J Neurosci ; 31(22): 8037-45, 2011 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-21632925

RESUMEN

During steady muscle contractions, the human sensorimotor cortex generates oscillations in the beta-frequency range (15-30 Hz) that are coherent with the activity of contralateral spinal motoneurons. This corticospinal coherence is thought to favor stationary motor states, but its mode of operation remains elusive. We hypothesized that corticospinal beta-range coherence depends on the sensorimotor processing state before a steady force task and may thus increase after sensorimotor tuning to dynamic force generation. To test this hypothesis we instructed 16 human subjects to compensate static force after rest as well as after compensating predictable or unpredictable dynamic force with their right index finger. We calculated EEG-EMG coherence, cortical motor spectral power, and the motor performance during the force conditions. Corticospinal beta-coherence during stationary force was excessively elevated if the steady-state contraction was preceded by predictable dynamic force instead of rest, and was highest after unpredictable dynamic force. The beta-power decreased from rest to predictable dynamic force, and was lowest during unpredictable dynamic force. The increase in corticospinal beta-coherence showed a significant negative correlation with the preceding change in beta-power. The tuning to dynamic force did not entail an inferior motor performance during static force. The results imply a correlation between corticospinal beta-range coherence and the computational load of the preceding isometric motor engagement. We suggest beta-range coherence provides a functional corticospinal gateway for steady force-related processing that can override cortical states tuned to dynamic force. The modulation of corticospinal beta-range coherence might thus ensure comparable precision of static force in various motor contexts.


Asunto(s)
Ritmo beta/fisiología , Corteza Cerebral/fisiología , Desempeño Psicomotor/fisiología , Tractos Piramidales/fisiología , Adulto , Electroencefalografía/métodos , Electromiografía/métodos , Femenino , Humanos , Masculino , Contracción Muscular/fisiología , Músculo Esquelético/fisiología
9.
J Neurophysiol ; 102(2): 1115-20, 2009 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-19458142

RESUMEN

Corticomuscular synchronization has been shown to occur in beta (15-30 Hz) and gamma range (30-45 Hz) during isometric compensation of static and dynamic (periodically modulated) low-level forces, respectively. However, it is still unknown to what extent these synchronization processes in beta and gamma range are modified with increasing modulated force. We addressed this question by investigating the corticomuscular coherence (CMC) between the electroencephalogram (EEG) and electromyogram (EMG) from the first dorsal interosseus muscle (FDI) as well as the cortical and muscular spectral power during a visuomotor task where different levels of a dynamic (modulated) force were used. Seven healthy right-handed female subjects compensated dynamic forces at 8, 16, and 24% of the maximal voluntary contraction (MVC) isometrically with their right index finger. Under the three conditions investigated, we found a broad-band CMC comprising both beta and gamma range and peaking at approximately 22 Hz within the beta band. This broad-band coherence increased linearly with higher force level. A separate analysis of the gamma range CMC did not show significant modulation of the CMC by the force levels. EEG and EMG spectral power did not show any significant difference among the three force conditions. Our results favor the view that the function of beta range CMC is not specific for low-level static forces only. The sensorimotor system may resort to stronger and also broader beta-range CMC to generate stable corticospinal interaction during increased force level, as well as when compensating for dynamic modulated forces. This finding re-enforces the importance of the beta-range EEG-EMG coherence in sensorimotor integration.


Asunto(s)
Ritmo beta , Contracción Isométrica/fisiología , Corteza Motora/fisiología , Fuerza Muscular/fisiología , Músculo Esquelético/fisiología , Corteza Somatosensorial/fisiología , Algoritmos , Análisis de Varianza , Electroencefalografía , Electromiografía , Femenino , Dedos/fisiología , Humanos , Actividad Motora/fisiología , Adulto Joven
10.
J Neurophysiol ; 99(4): 1906-16, 2008 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-18272868

RESUMEN

Recently, we studied corticomuscular coherence (CMC) in a visuomotor task and showed for the first time gamma-range (30-45 Hz) CMC during isometric compensation of a periodically modulated dynamic force. We speculated that for the control of such forces, the sensorimotor system resonates at gamma-range frequencies to rapidly integrate the visual and proprioceptive information and produce the appropriate motor command. In this study, we tested the role of the proprioceptive afferent feedback on gamma-range CMC by comparing the deafferented patient GL to six age- and sex-matched subjects during the performance of a visuomotor force task consisting of isometric compensation of static and dynamic forces applied on the finger. Patient GL presented no significant gamma-band CMC during dynamic force. Instead, she had only beta-range CMC as in the static force condition; concurrently, her performance was significantly worse than that of the controls in both conditions. This gives support to the conclusions of our previous paper and suggests that proprioceptive information is mandatory in the genesis of gamma-band CMC during the generation and control of dynamic forces.


Asunto(s)
Corteza Motora/fisiología , Neuronas Motoras/fisiología , Neuronas Aferentes/fisiología , Desempeño Psicomotor/fisiología , Algoritmos , Interpretación Estadística de Datos , Desnervación , Estimulación Eléctrica , Electroencefalografía , Electromiografía , Retroalimentación/fisiología , Femenino , Humanos , Contracción Isométrica/fisiología , Persona de Mediana Edad , Corteza Motora/citología , Músculo Esquelético/fisiología , Propiocepción/fisiología
11.
Neuroimage ; 36(3): 785-92, 2007 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-17493837

RESUMEN

The steady-state motor output, occurring during static force, is characterized by synchronization between oscillatory cortical motor and muscle activity confined to the beta frequency range (15-30 Hz). The functional significance of this beta-range coherence remains unclear. We hypothesized that if the beta-range coherence had a functional role, it would have a behavioral correlate; specifically, it would be related to the precision of the steady-state motor output. To test this hypothesis, we investigated the corticomuscular (EEG-EMG) coherence in eight healthy subjects during steady-state motor output in a visuomotor task, in which the subjects exerted a static force with their right index finger to keep a visual cursor within a target zone. We show that the beta-range EEG-EMG coherence is related to the behavioral performance, i.e. the error signal between target and exerted force. Furthermore, we show that the amplitude of the cortical spectral power is also related to the performance. Moreover, we provide evidence that the EEG-EMG coherence and the cortical spectral power are not completely independent phenomena. Together, our findings indicate that higher beta-range cortical spectral power and increased corticospinal coherence in the beta-range improve motor performance during steady-state motor output. This suggests that the beta-range cortical motor spectral power and corticomuscular coherence may promote effective corticospinal interaction.


Asunto(s)
Ritmo beta , Corteza Motora/fisiología , Músculo Esquelético/fisiología , Esfuerzo Físico/fisiología , Tractos Piramidales/fisiología , Adulto , Algoritmos , Interpretación Estadística de Datos , Electroencefalografía , Electromiografía , Femenino , Humanos , Masculino , Persona de Mediana Edad , Músculo Esquelético/inervación , Desempeño Psicomotor/fisiología
12.
Neuroimage ; 34(3): 1191-8, 2007 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-17182258

RESUMEN

The beta-range synchronization between cortical motor and muscular activity as revealed by EEG/MEG-EMG coherence has been extensively investigated for steady-state motor output. However, there is a lack of information on the modulation of the corticomuscular coherence in conjunction with dynamic force output. We addressed this question comparing the EEG-EMG coherence and the cortical motor spectral power in eight healthy subjects in a visuomotor task, in which the subjects exerted a steady-state or periodically modulated dynamic isometric force output with their right-index finger to keep a visual cursor within a target zone. In the static condition, significant coherence was confined to the beta-range. In the dynamic condition, the most distinct coherence occurred in the gamma-range and the significant beta-range coherence was strikingly reduced. The cortical motor power in the beta-range during dynamic force output was decreased, whereas the power in the gamma-range remained without significant change. We conclude that during dynamic force the corticospinal oscillation mode of the sensorimotor system shifts towards higher (principally gamma) frequencies for the rapid integration of the visual and somatosensory information required to produce the appropriate motor command.


Asunto(s)
Sincronización Cortical/métodos , Potenciales Evocados Motores/fisiología , Fuerza de la Mano/fisiología , Contracción Muscular/fisiología , Músculo Esquelético/fisiología , Adulto , Femenino , Humanos , Masculino , Estadística como Asunto , Estrés Mecánico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...