Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Neurobiol Learn Mem ; 205: 107829, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37734437

RESUMEN

Glucocorticoid administration, before or after fear memory reactivation, impairs subsequent fear memory expression, but the underlying mechanisms are not well understood. The present study examined the role of basolateral amygdala (BLA) ß-adrenoceptors in the effects of intra-BLA corticosterone injection on fear memory in rats. Bilateral cannulae were implanted in the BLA of Wistar male rats. The rats were trained and tested using an inhibitory avoidance task (1 mA footshock for 3 s). Forty-eight hours after training, corticosterone (CORT, 5, 10, or 20 ng/0.5 µl/side) and the ß2-adrenoceptor agonist clenbuterol (CLEN, 10 or 20 ng/0.5 µl/side) or the ß-adrenoceptor antagonist propranolol (PROP, 250 or 500 ng/0.5 µl/side) were injected into the BLA before or right after memory reactivation (retrieval, Test 1). We performed subsequent tests 2 (Test 2), 5 (Test 3), 7 (Test 4), and 9 (Test 5) days after Test 1. The results demonstrated that CORT injection before Test 1 disrupted memory retrieval and reduced fear expression in Tests 2-5, possibly due to enhanced extinction or impaired reconsolidation. CORT injection after Test 1 also impaired reconsolidation and reduced fear expression in Tests 2-5. CLEN prevented, but PROP exacerbated, the effects of CORT on fear expression. The reminder shock did not recover fear memory in CORT-treated animals, suggesting that reconsolidation, not extinction, was affected. These results indicate that glucocorticoids and ß-adrenoceptors in the BLA jointly modulate fear memory reconsolidation and expression. Comprehending the neurobiology of stress and the impact of glucocorticoids on fear memory may lead to new treatments for stress and trauma-induced disorders such as PTSD.


Asunto(s)
Complejo Nuclear Basolateral , Glucocorticoides , Ratas , Masculino , Animales , Glucocorticoides/farmacología , Corticosterona/metabolismo , Complejo Nuclear Basolateral/metabolismo , Ratas Wistar , Amígdala del Cerebelo/fisiología , Miedo/fisiología , Receptores Adrenérgicos beta/metabolismo
2.
Physiol Behav ; 265: 114156, 2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-36918107

RESUMEN

This study investigated the interactive effect of glucocorticoid and Gamma-aminobutyric acid (GABA) receptors in the Infralimbic (IL) cortex on fear extinction in rats' auditory fear conditioning task (AFC). Animals received 3 conditioning trial tones (conditioned stimulus, 30 s, 4 kHz, 80 dB) co-terminated with a footshock (unconditioned stimulus, 0.8 mA, 1 s). Extinction testing was conducted over 3 days (Ext 1-3) after conditioning. Intra-IL injection of corticosterone (CORT, 20 ng/0.3 µl/side) was performed 15 min before the first extinction trial (Ext 1) which attenuated auditory fear expression in subsequent extinction trials (Ext 1-3), demonstrating fear memory extinction enhancement. Co-injection of the GABAA agonist muscimol (250 ng/0.3 µl/side) or the GABAB agonist baclofen (250 ng/0.3 µl/side) 15 min before corticosterone, did not significantly affect the facilitative effects of corticosterone on fear extinction. However, co-injection of the GABAA antagonist bicuculline (BIC, 100 ng/0.3 µl/side) or the GABAB antagonist CGP35348 (CGP, 100 ng/0.3 µl/side) 15 min before corticosterone, blocked the facilitative effects of corticosterone on fear extinction. Moreover, extracellular signal-regulated kinase (ERK) and cAMP response element-binding (CREB) in the IL were examined by Western blotting analysis after the first extinction trial (Ext 1) in some groups. Intra-IL injection of corticosterone increased the ERK activity but not CREB. Co-injection of the bicuculline or CGP35348 blocked the enhancing effect of corticosterone on ERK expression in the IL. Glucocorticoid receptors (GRs) activation in the IL cortex by corticosterone increased ERK activity and facilitated fear extinction. GABAA or GABAB antagonists decreased ERK activity and inhibited corticosterone's effect. GRs and GABA receptors in the IL cortex jointly modulate the fear extinction processes via the ERK pathway. This pre-clinical animal study may highlight GRs and GABA interactions in the IL cortex modulating fear memory processes in fear-related disorders such as post-traumatic stress disorder (PTSD).


Asunto(s)
Corticosterona , Glucocorticoides , Ratas , Animales , Glucocorticoides/metabolismo , Corticosterona/farmacología , Corticosterona/metabolismo , Extinción Psicológica/fisiología , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Quinasas MAP Reguladas por Señal Extracelular/farmacología , Receptores de GABA/metabolismo , Miedo/fisiología , Bicuculina/farmacología , Bicuculina/metabolismo , Ratas Sprague-Dawley , Corteza Prefrontal/metabolismo , Receptores de Glucocorticoides/metabolismo , Ácido gamma-Aminobutírico/metabolismo
3.
Basic Clin Neurosci ; 13(2): 193-205, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36425953

RESUMEN

Introduction: The basolateral amygdala (BLA) and infralimbic area (IL) of the medial prefrontal cortex (mPFC) are two interconnected brain structures that mediate both fear memory expression and extinction. Besides the well-known role of the BLA in the acquisition and expression of fear memory, projections from IL to BLA inhibit fear expression and have a critical role in fear extinction. However, the details of IL-BLA interaction have remained unclear. Here, we investigated the role of functional reciprocal interactions between BLA and IL in mediating fear memory extinction. Methods: Using lidocaine (LID), male rats underwent unilateral or bilateral inactivation of the BLA and then unilateral intra-IL infusion of corticosterone (CORT) prior to extinction training of the auditory fear conditioning paradigm. Freezing behavior was reported as an index for conditioned fear. Infusions were performed before the extinction training, allowing us to examine the effects on fear expression and further extinction memory. Experiments 1-3 investigated the effects of left or right infusion of CORT into IL and LID unilaterally into BLA on fear memory extinction. Results: Intra-IL infusion of CORT in the right hemisphere reduced freezing behavior when administrated before the extinction training. Auditory fear memory extinction was impaired by asymmetric inactivation of BLA and CORT infusion in the right IL; however, the same effect was not observed with symmetric inactivation of BLA. Conclusion: IL-BLA neural circuit may provide additional evidence for the contribution of this circuit to auditory fear extinction. This study demonstrates dissociable roles for right or left BLA in subserving the auditory fear extinction. Our finding also raises the possibility that left BLA-IL circuitry may mediate auditory fear memory extinction via underlying mechanisms. However, further research is required in this area. Highlights: Corticosterone infusion in the right (but not the left) infralimbic area facilitates auditory fear memory extinction.Corticosterone infusion in the right infralimbic area following symmetric basolateral amygdala inactivation has no effect on auditory fear memory extinction.Asymmetric basolateral amygdala inactivation prior to corticosterone infusion into the right infralimbic area impairs auditory fear memory extinction. Plain Language Summary: Previous studies have established that glucocorticoids, which are released in stressful conditions, enhance fear memory extinction. In this study, we found that corticosterone infusion into the right infralimbic area, but not the left one, facilitates auditory fear memory extinction. The effect of corticosterone infusion in the infralimbic area was not blocked by the intra-basolateral amygdala injections of lidocaine when administrated in the ipsilateral hemisphere. However, asymmetric basolateral amygdala inactivation and corticosterone infusion into the right infralimbic area impairs auditory fear memory extinction.

4.
Behav Brain Res ; 418: 113638, 2022 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-34695541

RESUMEN

Disruptions in light/dark cycle have been associated with an altered ability to form and retrieve memory in human and animals. Animal studies have shown that chronic light deprivation disrupts the light/dark cycle and alters the neural connections that mediate hippocampal memory formation. In order to better understand how light deprivation affects the formation and retrieval of memory in adult rats, we examined the effect of total darkness on spatial and auditory fear learning and memory formation and BDNF/TRKB protein levels during the light and dark phases of the rat circadian cycle. Male Wistar rats (n = 60), were randomly divided into two main groups: normal rearing (NR, 12 h light/dark cycle for 3 weeks) and dark rearing (DR, kept in constant darkness for 3 weeks); and each of these groups had a "light (day)" and "dark (night)" sub-group. After 3 weeks, the Morris Water maze and auditory fear conditioning were used to assess spatial and fear memory acquisition and retrieval, respectively. BDNF and TRKB protein levels in the hippocampus of rats from the four sub-groups were measured by Western blot, at the completion of the 3 week constant darkness exposure and after the behavioral experiments. These studies revealed that DR for 3 weeks impaired spatial memory retrieval and enhanced extinction of auditory fear memory specifically during the light (day) phase. DR also eliminated the normal fluctuations in BDNF/TRKB levels observed in the hippocampus across the light/dark cycle.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo/metabolismo , Ritmo Circadiano/fisiología , Miedo/fisiología , Hipocampo/metabolismo , Fotoperiodo , Receptor trkB/metabolismo , Memoria Espacial/fisiología , Animales , Factor Neurotrófico Derivado del Encéfalo/genética , Masculino , Aprendizaje por Laberinto , Ratas , Ratas Wistar , Receptor trkB/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...