Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Geroscience ; 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38630423

RESUMEN

Both heart failure with preserved ejection fraction (HFpEF) and non-alcoholic fatty liver disease (NAFLD) develop due to metabolic dysregulation, has similar risk factors (e.g., insulin resistance, systemic inflammation) and are unresolved clinical challenges. Therefore, the potential link between the two disease is important to study. We aimed to evaluate whether NASH is an independent factor of cardiac dysfunction and to investigate the age dependent effects of NASH on cardiac function. C57Bl/6 J middle aged (10 months old) and aged mice (24 months old) were fed either control or choline deficient (CDAA) diet for 8 weeks. Before termination, echocardiography was performed. Upon termination, organ samples were isolated for histological and molecular analysis. CDAA diet led to the development of NASH in both age groups, without inducing weight gain, allowing to study the direct effect of NASH on cardiac function. Mice with NASH developed hepatomegaly, fibrosis, and inflammation. Aged animals had increased heart weight. Conventional echocardiography revealed normal systolic function in all cohorts, while increased left ventricular volumes in aged mice. Two-dimensional speckle tracking echocardiography showed subtle systolic and diastolic deterioration in aged mice with NASH. Histologic analyses of cardiac samples showed increased cross-sectional area, pronounced fibrosis and Col1a1 gene expression, and elevated intracardiac CD68+ macrophage count with increased Il1b expression. Conventional echocardiography failed to reveal subtle change in myocardial function; however, 2D speckle tracking echocardiography was able to identify diastolic deterioration. NASH had greater impact on aged animals resulting in cardiac hypertrophy, fibrosis, and inflammation.

2.
Int J Mol Sci ; 24(18)2023 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-37762130

RESUMEN

The identification of novel drug targets is needed to improve the outcomes of heart failure (HF). G-protein-coupled receptors (GPCRs) represent the largest family of targets for already approved drugs, thus providing an opportunity for drug repurposing. Here, we aimed (i) to investigate the differential expressions of 288 cardiac GPCRs via droplet digital PCR (ddPCR) and bulk RNA sequencing (RNAseq) in a rat model of left ventricular pressure-overload; (ii) to compare RNAseq findings with those of ddPCR; and (iii) to screen and test for novel, translatable GPCR drug targets in HF. Male Wistar rats subjected to transverse aortic constriction (TAC, n = 5) showed significant systolic dysfunction vs. sham operated animals (SHAM, n = 5) via echocardiography. In TAC vs. SHAM hearts, RNAseq identified 69, and ddPCR identified 27 significantly differentially expressed GPCR mRNAs, 8 of which were identified using both methods, thus showing a correlation between the two methods. Of these, Prostaglandin-F2α-receptor (Ptgfr) was further investigated and localized on cardiomyocytes and fibroblasts in murine hearts via RNA-Scope. Antagonizing Ptgfr via AL-8810 reverted angiotensin-II-induced cardiomyocyte hypertrophy in vitro. In conclusion, using ddPCR as a novel screening method, we were able to identify GPCR targets in HF. We also show that the antagonism of Ptgfr could be a novel target in HF by alleviating cardiomyocyte hypertrophy.


Asunto(s)
Insuficiencia Cardíaca , Masculino , Ratas , Ratones , Animales , Ratas Wistar , Insuficiencia Cardíaca/genética , Miocitos Cardíacos , Reacción en Cadena de la Polimerasa , Hipertrofia
3.
Int J Mol Sci ; 24(10)2023 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-37239853

RESUMEN

Duchenne muscular dystrophy (DMD) is characterized by wasting of muscles that leads to difficulty moving and premature death, mainly from heart failure. Glucocorticoids are applied in the management of the disease, supporting the hypothesis that inflammation may be driver as well as target. However, the inflammatory mechanisms during progression of cardiac and skeletal muscle dysfunction are still not well characterized. Our objective was to characterize the inflammasomes in myocardial and skeletal muscle in rodent models of DMD. Gastrocnemius and heart samples were collected from mdx mice and DMDmdx rats (3 and 9-10 months). Inflammasome sensors and effectors were assessed by immunoblotting. Histology was used to assess leukocyte infiltration and fibrosis. In gastrocnemius, a tendency towards elevation of gasdermin D irrespective of the age of the animal was observed. The adaptor protein was elevated in the mdx mouse skeletal muscle and heart. Increased cleavage of the cytokines was observed in the skeletal muscle of the DMDmdx rats. Sensor or cytokine expression was not changed in the tissue samples of the mdx mice. In conclusion, inflammatory responses are distinct between the skeletal muscle and heart in relevant models of DMD. Inflammation tends to decrease over time, supporting the clinical observations that the efficacy of anti-inflammatory therapies might be more prominent in the early stage.


Asunto(s)
Distrofia Muscular de Duchenne , Ratones , Ratas , Animales , Distrofia Muscular de Duchenne/metabolismo , Inflamasomas/metabolismo , Ratones Endogámicos mdx , Roedores/metabolismo , Músculo Esquelético/metabolismo , Inflamación/metabolismo , Citocinas/metabolismo , Modelos Animales de Enfermedad
4.
Br J Pharmacol ; 180(6): 685-700, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36484549

RESUMEN

The available pharmacological options in the management of cardiovascular diseases such as ischaemic heart disease and subsequent heart failure are effective in slowing the progression of this condition. However, the long-term prognosis is still poor, raising the demand for new therapeutic strategies. Drug repurposing is a time- and cost-effective drug development strategy that offers approved and abandoned drugs a new chance for new indications. Recently, drugs used for the management of gout-related inflammation such as canakinumab or colchicine have been considered for drug repurposing in cardiovascular indications. The old uricosuric drug, probenecid, has been identified as a novel therapeutic option in the management of specific cardiac diseases as well. Probenecid can modulate myocardial contractility and vascular tone and exerts anti-inflammatory properties. The mechanisms behind these beneficial effects might be related inhibition of inflammasomes, and to modulation purinergic-pannexin-1 signalling and TRPV2 channels, which are recently identified molecular targets of probenecid. In this review, we provide an overview on repurposing probenecid for ischaemic heart disease and subsequent heart failure by summarizing the related experimental and clinical data and propose its potential repurposing to treat cardiovascular diseases.


Asunto(s)
Enfermedades Cardiovasculares , Enfermedad de la Arteria Coronaria , Insuficiencia Cardíaca , Isquemia Miocárdica , Humanos , Probenecid/farmacología , Probenecid/uso terapéutico , Reposicionamiento de Medicamentos , Enfermedades Cardiovasculares/tratamiento farmacológico , Insuficiencia Cardíaca/tratamiento farmacológico , Isquemia Miocárdica/tratamiento farmacológico
5.
Br J Pharmacol ; 180(6): 740-761, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36356191

RESUMEN

BACKGROUND AND PURPOSE: Immune checkpoint inhibitors (ICI), such as anti-PD-1 monoclonal antibodies, have revolutionized cancer therapy by enhancing the cytotoxic effects of T-cells against tumours. However, enhanced T-cell activity also may cause myocarditis and cardiotoxicity. Our understanding of the mechanisms of ICI-induced cardiotoxicity is limited. Here, we aimed to investigate the effect of PD-1 inhibition on cardiac function and explore the molecular mechanisms of ICI-induced cardiotoxicity. EXPERIMENTAL APPROACH: C57BL6/J and BALB/c mice were treated with isotype control or anti-PD-1 antibody. Echocardiography was used to assess cardiac function. Cardiac transcriptomic changes were investigated by bulk RNA sequencing. Inflammatory changes were assessed by qRT-PCR and immunohistochemistry in heart, thymus, and spleen of the animals. In follow-up experiments, anti-CD4 and anti-IL-17A antibodies were used along with PD-1 blockade in C57BL/6J mice. KEY RESULTS: Anti-PD-1 treatment led to cardiac dysfunction and left ventricular dilation in C57BL/6J mice, with increased nitrosative stress. Only mild inflammation was observed in the heart. However, PD-1 inhibition resulted in enhanced thymic inflammatory signalling, where Il17a increased most prominently. In BALB/c mice, cardiac dysfunction was not evident, and thymic inflammatory activation was more balanced. Inhibition of IL-17A prevented anti-PD-1-induced cardiac dysfunction in C57BL6/J mice. Comparing myocardial transcriptomic changes in C57BL/6J and BALB/c mice, differentially regulated genes (Dmd, Ass1, Chrm2, Nfkbia, Stat3, Gsk3b, Cxcl9, Fxyd2, and Ldb3) were revealed, related to cardiac structure, signalling, and inflammation. CONCLUSIONS: PD-1 blockade induces cardiac dysfunction in mice with increased IL-17 signalling in the thymus. Pharmacological inhibition of IL-17A treatment prevents ICI-induced cardiac dysfunction.


Asunto(s)
Cardiotoxicidad , Cardiopatías , Ratones , Animales , Cardiotoxicidad/etiología , Inhibidores de Puntos de Control Inmunológico/efectos adversos , Interleucina-17 , Ratones Endogámicos C57BL , Inflamación/complicaciones
6.
Biomedicines ; 10(7)2022 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-35884882

RESUMEN

Dipeptidyl-peptidase-4 (DPP4) inhibitors are novel medicines for diabetes. The SAVOR-TIMI-53 clinical trial revealed increased heart-failure-associated hospitalization in saxagliptin-treated patients. Although this side effect could limit therapeutic use, the mechanism of this potential cardiotoxicity is unclear. We aimed to establish a cellular platform to investigate DPP4 inhibition and the role of its neuropeptide substrates substance P (SP) and neuropeptide Y (NPY), and to determine the expression of DDP4 and its neuropeptide substrates in the human heart. Western blot, radio-, enzyme-linked immuno-, and RNA scope assays were performed to investigate the expression of DPP4 and its substrates in human hearts. Calcein-based viability measurements and scratch assays were used to test the potential toxicity of DPP4 inhibitors. Cardiac expression of DPP4 and NPY decreased in heart failure patients. In human hearts, DPP4 mRNA is detectable mainly in cardiomyocytes and endothelium. Treatment with DPP4 inhibitors alone/in combination with neuropeptides did not affect viability but in scratch assays neuropeptides decreased, while saxagliptin co-administration increased fibroblast migration in isolated neonatal rat cardiomyocyte-fibroblast co-culture. Decreased DPP4 activity takes part in the pathophysiology of end-stage heart failure. DPP4 compensates against the elevated sympathetic activity and altered neuropeptide tone. Its inhibition decreases this adaptive mechanism, thereby exacerbating myocardial damage.

7.
ESC Heart Fail ; 9(4): 2747-2752, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35585786

RESUMEN

AIMS: Inflammatory pathways are increasingly recognized as an important factor in the pathophysiology of both heart failure (HF) and atrial fibrillation (AF). However, there is no data about inflammation-related histological and molecular alterations in HF-associated AF. The objective of our study was to investigate inflammatory pathways and fibrosis in end-stage HF-associated AF. METHODS AND RESULTS: Left atrial samples of 24 male patients with end stage ischemic HF undergoing heart transplantation were analysed. Twelve patients suffered from sustained AF while the others had no documented AF. The expression of inflammasome sensors and their downstream signalling were investigated by Western blot. No differences were observed in the expression of inflammasome sensors between the two groups, while cleaved caspase-1 increased tendentiously in the AF group (P = 0.051). Cleaved caspase-1 also showed significant correlation with the expression of interleukin-1ß and its cleaved form in the total population and in the AF group (P < 0.05). The presence of myocardial and epicardial macrophages were assessed by ionized calcium-binding adaptor molecule 1 (Iba1) immunostaining. Number of macrophages showed a tendency towards elevation in the left atrial myocardium and epicardium of AF compared with SR group. The amount of total and interstitial fibrosis was determined on Masson's trichrome-stained sections. Histological assessment revealed no difference between AF and SR groups in the amount of either total or interstitial fibrosis. CONCLUSIONS: This is the first study on inflammation-related differences between HF with SR or AF showing elevated inflammasome activity and enhanced macrophage infiltration in left atrial samples of patients with AF.


Asunto(s)
Fibrilación Atrial , Insuficiencia Cardíaca , Fibrilación Atrial/complicaciones , Caspasas , Fibrosis , Insuficiencia Cardíaca/etiología , Humanos , Inflamasomas/metabolismo , Inflamación , Masculino
8.
Int J Mol Sci ; 23(7)2022 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-35409075

RESUMEN

Pituitary adenylate cyclase activating polypeptide-38 (PACAP-38) is a multifunctional neuropeptide, which may play a role in cardioprotection. However, little is known about the presence of PACAP-38 in heart failure (HF) patients. The aim of our study was to measure the alterations of PACAP-38 like immunoreactivity (LI) in acute (n = 13) and chronic HF (n = 33) and to examine potential correlations between PACAP-38 and HF predictors (cytokines, NT-proBNP). Tissue PACAP-38 LI and PAC1 receptor levels were also investigated in heart tissue samples of patients with HF. Significantly higher plasma PACAP-38 LI was detected in patients with acute HF, while in chronic HF patients, a lower level of immunoreactivity was observed compared to healthy controls (n = 13). Strong negative correlation was identified between plasma PACAP-38 and NT-proBNP levels in chronic HF, as opposed to the positive connection seen in the acute HF group. Plasma IL-1 ß, IL-2 and IL-4 levels were significantly lower in chronic HF, and IL-10 was significantly higher in patients with acute HF. PACAP-38 levels of myocardial tissues were lower in all end-stage HF patients and lower PAC1 receptor levels were detected in the primary dilated cardiomyopathy group compared to the controls. We conclude that PACAP-38 and PAC1 expression correlates with some biomarkers of acute and chronic HF; therefore, further studies are necessary to explore whether PACAP could be a suitable prognostic biomarker in HF patients.


Asunto(s)
Insuficiencia Cardíaca , Polipéptido Hipofisario Activador de la Adenilato-Ciclasa , Humanos , Miocardio/metabolismo , Polipéptido Hipofisario Activador de la Adenilato-Ciclasa/metabolismo , Receptores del Polipéptido Activador de la Adenilato-Ciclasa Hipofisaria/metabolismo
9.
J Mol Cell Cardiol ; 165: 19-30, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34959166

RESUMEN

BACKGROUND: Cardiac cell lines and primary cells are widely used in cardiovascular research. Despite increasing number of publications using these models, comparative characterization of these cell lines has not been performed, therefore, their limitations are undetermined. We aimed to compare cardiac cell lines to primary cardiomyocytes and to mature cardiac tissues in a systematic manner. METHODS AND RESULTS: Cardiac cell lines (H9C2, AC16, HL-1) were differentiated with widely used protocols. Left ventricular tissue, neonatal primary cardiomyocytes, and human induced pluripotent stem cell-derived cardiomyocytes served as reference tissue or cells. RNA expression of cardiac markers (e.g. Tnnt2, Ryr2) was markedly lower in cell lines compared to references. Differentiation induced increase in cardiac- and decrease in embryonic markers however, the overall transcriptomic profile and annotation to relevant biological processes showed consistently less pronounced cardiac phenotype in all cell lines in comparison to the corresponding references. Immunocytochemistry confirmed low expressions of structural protein sarcomeric alpha-actinin, troponin I and caveolin-3 in cell lines. Susceptibility of cell lines to sI/R injury in terms of viability as well as mitochondrial polarization differed from the primary cells irrespective of their degree of differentiation. CONCLUSION: Expression patterns of cardiomyocyte markers and whole transcriptomic profile, as well as response to sI/R, and to hypertrophic stimuli indicate low-to-moderate similarity of cell lines to primary cells/cardiac tissues regardless their differentiation. Low resemblance of cell lines to mature adult cardiac tissue limits their potential use. Low translational value should be taken into account while choosing a particular cell line to model cardiomyocytes.


Asunto(s)
Células Madre Pluripotentes Inducidas , Miocitos Cardíacos , Animales , Biomarcadores/metabolismo , Diferenciación Celular/genética , Línea Celular , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Ratones , Miocitos Cardíacos/metabolismo , Fenotipo , Transcriptoma
10.
Front Pharmacol ; 12: 663655, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34803662

RESUMEN

Little is known about the role of the neuropeptide somatostatin (SST) in myocardial ischemia/reperfusion injury and cardioprotection. Here, we investigated the direct cardiocytoprotective effect of SST on ischemia/reperfusion injury in cardiomyocyte cultures, as well as the expression of SST and its receptors in pig and human heart tissues. SST induced a bell-shaped, concentration-dependent cardiocytoprotection in both adult rat primary cardiomyocytes and H9C2 cells subjected to simulated ischemia/reperfusion injury. Furthermore, in a translational porcine closed-chest acute myocardial infarction model, ischemic preconditioning increased plasma SST-like immunoreactivity. Interestingly, SST expression was detectable at the protein, but not at the mRNA level in the pig left ventricles. SSTR1 and SSTR2, but not the other SST receptors, were detectable at the mRNA level by PCR and sequencing in the pig left ventricle. Moreover, remote ischemic conditioning upregulated SSTR1 mRNA. Similarly, SST expression was also detectable in healthy human interventricular septum samples at the protein level. Furthermore, SST-like immunoreactivity decreased in interventricular septum samples of patients with ischemic cardiomyopathy. SSTR1, SSTR2, and SSTR5 but not SST and the other SST receptors were detectable at the mRNA level by sequencing in healthy human left ventricles. In addition, in healthy human left ventricle samples, SSTR1 and SSTR2 mRNAs were expressed especially in vascular endothelial and some other cell types as detected by RNA Scope® in situ hybridization. This is the first demonstration that SST exerts a direct cardiocytoprotective effect against simulated ischemia/reperfusion injury. Moreover, SST is expressed in the heart tissue at the peptide level; however, it is likely to be of sensory neural origin since its mRNA is not detectable. SSTR1 and SSTR2 might be involved in the cardioprotective action of SST, but other mechanisms cannot be excluded.

11.
Cardiovasc Res ; 117(13): 2639-2651, 2021 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-34117866

RESUMEN

AIMS: Interleukin-1ß (IL-1ß) is an important pathogenic factor in cardiovascular diseases including chronic heart failure (HF). The CANTOS trial highlighted that inflammasomes as primary sources of IL-1 ß are promising new therapeutic targets in cardiovascular diseases. Therefore, we aimed to assess inflammasome activation in failing hearts to identify activation patterns of inflammasome subtypes as sources of IL-1ß. METHODS AND RESULTS: Out of the four major inflammasome sensors tested, expression of the inflammasome protein absent in melanoma 2 (AIM2) and NLR family CARD domain-containing protein 4 (NLRC4) increased in human HF regardless of the aetiology (ischaemic or dilated cardiomyopathy), while the NLRP1/NALP1 and NLRP3 (NLR family, pyrin domain containing 1 and 3) inflammasome showed no change in HF samples. AIM2 expression was primarily detected in monocytes/macrophages of failing hearts. Translational animal models of HF (pressure or volume overload, and permanent coronary artery ligation in rat, as well as ischaemia/reperfusion-induced HF in pigs) demonstrated activation pattern of AIM2 similar to that of observed in end-stages of human HF. In vitro AIM2 inflammasome activation in human Tohoku Hospital Pediatrics-1 (THP-1) monocytic cells and human AC16 cells was significantly reduced by pharmacological blockade of pannexin-1 channels by the clinically used uricosuric drug probenecid. Probenecid was also able to reduce pressure overload-induced mortality and restore indices of disease severity in a rat chronic HF model in vivo. CONCLUSIONS: This is the first report showing that AIM2 and NLRC4 inflammasome activation contribute to chronic inflammation in HF and that probenecid alleviates chronic HF by reducing inflammasome activation. The present translational study suggests the possibility of repositioning probenecid for HF indications.


Asunto(s)
Proteínas Adaptadoras de Señalización CARD/metabolismo , Proteínas de Unión al Calcio/metabolismo , Proteínas de Unión al ADN/metabolismo , Insuficiencia Cardíaca/metabolismo , Inflamasomas/metabolismo , Miocitos Cardíacos/metabolismo , Receptores de Superficie Celular/metabolismo , Adolescente , Adulto , Anciano , Animales , Proteínas Adaptadoras de Señalización CARD/genética , Proteínas Adaptadoras de Señalización CARD/inmunología , Proteínas de Unión al Calcio/genética , Proteínas de Unión al Calcio/inmunología , Estudios de Casos y Controles , Conexinas/antagonistas & inhibidores , Conexinas/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/inmunología , Modelos Animales de Enfermedad , Femenino , Insuficiencia Cardíaca/tratamiento farmacológico , Insuficiencia Cardíaca/inmunología , Insuficiencia Cardíaca/fisiopatología , Humanos , Inflamasomas/inmunología , Masculino , Persona de Mediana Edad , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/inmunología , Proteínas del Tejido Nervioso/antagonistas & inhibidores , Proteínas del Tejido Nervioso/metabolismo , Probenecid/farmacología , Ratas Wistar , Receptores de Superficie Celular/genética , Receptores de Superficie Celular/inmunología , Transducción de Señal , Sus scrofa , Células THP-1 , Función Ventricular Izquierda , Adulto Joven
12.
J Vis Exp ; (170)2021 04 17.
Artículo en Inglés | MEDLINE | ID: mdl-33938885

RESUMEN

The development of heart failure is the most powerful predictor of long-term mortality in patients surviving acute myocardial infarction (MI). There is an unmet clinical need for prevention and therapy of post-myocardial infarction heart failure (post-MI HF). Clinically relevant pig models of post-MI HF are prerequisites for final proof-of-concept studies before entering into clinical trials in drug and medical device development. Here we aimed to characterize a closed-chest porcine model of post-MI HF in adult Göttingen minipigs with long-term follow-up including serial cardiac magnetic resonance imaging (CMRI) and to compare it with the commonly used Landrace pig model. MI was induced by intraluminal balloon occlusion of the left anterior descending coronary artery for 120 min in Göttingen minipigs and for 90 min in Landrace pigs, followed by reperfusion. CMRI was performed to assess cardiac morphology and function at baseline in both breeds and at 3 and 6 months in Göttingen minipigs and at 2 months in Landrace pigs, respectively. Scar sizes were comparable in the two breeds, but MI resulted in a significant decrease of left ventricular ejection fraction (LVEF) only in Göttingen minipigs, while Landrace pigs did not show a reduction of LVEF. Right ventricular (RV) ejection fraction increased in both breeds despite the negligible RV scar sizes. In contrast to the significant increase of left ventricular end-diastolic (LVED) mass in Landrace pigs at 2 months, Göttingen minipigs showed a slight increase in LVED mass only at 6 months. In summary, this is the first characterization of post-MI HF in Göttingen minipigs in comparison to Landrace pigs, showing that the Göttingen minipig model reflects post-MI HF parameters comparable to the human pathology. We conclude that the Göttingen minipig model is superior to the Landrace pig model to study the development of post-MI HF.


Asunto(s)
Modelos Animales de Enfermedad , Insuficiencia Cardíaca/etiología , Infarto del Miocardio/complicaciones , Animales , Oclusión Coronaria/diagnóstico por imagen , Oclusión Coronaria/fisiopatología , Femenino , Corazón/diagnóstico por imagen , Corazón/fisiopatología , Insuficiencia Cardíaca/diagnóstico por imagen , Insuficiencia Cardíaca/fisiopatología , Imagen por Resonancia Magnética , Infarto del Miocardio/diagnóstico por imagen , Infarto del Miocardio/fisiopatología , Reperfusión Miocárdica , Daño por Reperfusión Miocárdica/fisiopatología , Porcinos , Porcinos Enanos , Función Ventricular Izquierda
13.
Front Physiol ; 12: 609465, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33692700

RESUMEN

BACKGROUND: The prevalence of non-alcoholic steatohepatitis (NASH) rapidly increases with associated metabolic disorders such as dyslipidemia; therefore, NASH is now considered an independent risk factor of cardiovascular diseases. NASH displays sex-linked epidemiological, phenotypical, and molecular differences; however, little is known about the background of these sex-specific differences on the molecular level. OBJECTIVES: We aimed to assess sex-specific differences in the expression of inflammatory and fibrotic genes, as well as in cholesterol metabolism, focusing on the expression of Pcsk9 in several tissues in a mouse model of NASH that shows the typical features of the human condition. METHODS AND RESULTS: We fed 10-months-old male and female C57Bl/6J mice with a NASH-inducing CDAA or corresponding control diet for 8 weeks. We found that, compared to the control male mice baseline, hepatic Pcsk9 expression as well as serum PCSK9 level was significantly higher in females, and both circulating PCSK9 level and the hepatic Pcsk9 gene were markedly decreased in female mice during NASH development. Histological analysis revealed that male and female mice develop a similar degree of steatosis; however, fibrosis was more pronounced in males upon CDAA diet feeding. Strikingly, female mice have higher hepatic expression of the pro-inflammatory cytokines (Il1b, Ifng), and increased IL-1ß cleavage by the NLRP3 inflammasome, and a decrease in Clec4f+ resident Kupffer cell population in comparison to males in the CDAA-fed groups. CONCLUSION: This is the first demonstration that there are critical sex-specific differences during NASH development in middle-aged mice regarding inflammation, fibrosis, and cholesterol metabolism and that changes in PCSK9 and IL-1ß are likely important contributors to sex-specific changes during the transition to NASH.

14.
Cells ; 9(3)2020 02 26.
Artículo en Inglés | MEDLINE | ID: mdl-32111102

RESUMEN

Cardiac adverse effects are among the leading causes of the discontinuation of clinical trials and the withdrawal of drugs from the market. The novel concept of 'hidden cardiotoxicity' is defined as cardiotoxicity of a drug that manifests in the diseased (e.g. ischemic/reperfused), but not in the healthy heart or as a drug-induced deterioration of cardiac stress adaptation (e.g. ischemic conditioning). Here, we aimed to test if the cardiotoxicity of a selective COX-2 inhibitor rofecoxib that was revealed during its clinical use, i.e., increased occurrence of proarrhythmic and thrombotic events, could have been revealed in early phases of drug development by using preclinical models of ischemia/reperfusion (I/R) injury. Rats that were treated with rofecoxib or vehicle for four weeks were subjected to 30 min. coronary artery occlusion and 120 min. reperfusion with or without cardioprotection that is induced by ischemic preconditioning (IPC). Rofecoxib increased overall the arrhythmias including ventricular fibrillation (VF) during I/R. The proarrhythmic effect of rofecoxib during I/R was not observed in the IPC group. Rofecoxib prolonged the action potential duration (APD) in isolated papillary muscles, which was not seen in the simulated IPC group. Interestingly, while showing hidden cardiotoxicity manifested as a proarrhythmic effect during I/R, rofecoxib decreased the infarct size and increased the survival of adult rat cardiac myocytes that were subjected to simulated I/R injury. This is the first demonstration that rofecoxib increased acute mortality due to its proarrhythmic effect via increased APD during I/R. Rofecoxib did not interfere with the cardiprotective effect of IPC; moreover, IPC was able to protect against rofecoxib-induced hidden cardiotoxicity. These results show that cardiac safety testing with simple preclinical models of I/R injury uncovers hidden cardiotoxicity of rofecoxib and might reveal the hidden cardiotoxicity of other drugs.


Asunto(s)
Cardiotoxicidad/complicaciones , Lactonas/efectos adversos , Daño por Reperfusión/complicaciones , Sulfonas/efectos adversos , Potenciales de Acción/efectos de los fármacos , Animales , Arritmias Cardíacas/complicaciones , Cardiotónicos/farmacología , Supervivencia Celular/efectos de los fármacos , Modelos Animales de Enfermedad , Precondicionamiento Isquémico , Masculino , Infarto del Miocardio/complicaciones , Infarto del Miocardio/patología , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/patología , Ratas Wistar
15.
Pharmacol Res ; 151: 104578, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31794870

RESUMEN

AIM: Acute myocardial infarction and subsequent post-infarction heart failure are among the leading causes of mortality worldwide. The endocannabinoid system has emerged as an important modulator of cardiovascular disease, however the role of endocannabinoid metabolic enzymes in heart failure is still elusive. Herein, we investigated the endocannabinoids and their metabolic enzymes in ischemic end-stage failing human hearts and non-failing controls. METHODS AND RESULTS: Quantitative real-time PCR, targeted lipidomics, and activity-based protein profiling (ABPP) enabled assessment of the endocannabinoids and their metabolic enzymes in ischemic end-stage failing human hearts and non-failing controls. Based on lipidomic analysis, two subgroups were identified within the ischemic heart failure group; the first similar to control hearts and the second with decreased levels of the endocannabinoid 2-arachidonoyl-glycerol (2-AG) and drastically increased levels of the endocannabinoid anandamide (AEA), other N-acylethanolamines (NAEs) and free fatty acids. The altered lipid profile was accompanied by strong reductions in the activity of 13 hydrolases, including the 2-AG hydrolytic enzyme monoacylglycerol lipase (MGLL). CONCLUSIONS: Our findings suggest the presence of different biological states within the ischemic heart failure group, based on alterations in the lipid and hydrolase activity profiles. In addition, this study demonstrates that ABPP is a valuable tool to rapidly analyze enzyme activity in clinical samples with potential for novel drug and biomarker discovery.


Asunto(s)
Endocannabinoides/metabolismo , Insuficiencia Cardíaca/metabolismo , Hidrolasas/metabolismo , Isquemia Miocárdica/metabolismo , Adulto , Femenino , Humanos , Lipidómica , Masculino , Persona de Mediana Edad , Infarto del Miocardio/metabolismo , Proteómica
16.
Front Physiol ; 9: 1479, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30405435

RESUMEN

Background: Extracellular vesicles (EVs) (isolated from blood plasma) are currently being extensively researched, both as biomarkers and for their therapeutic possibilities. One challenging aspect to this research is the efficient isolation of high-purity EVs from blood plasma in quantities sufficient for in vivo experiments. In accordance with this challenge, the aim of this study was to develop an isolation method in which to separate the majority of EVs from major impurities such as lipoprotein particles and the abundant plasma proteins albumin and fibrinogen. Methods: Samples of rat blood were centrifuged to remove cells, platelets, large EVs and protein aggregates without prior filtration. Density gradient ultracentrifugation was performed by loading plasma sample onto 50, 30, and 10% iodixanol layers and then centrifuged at 120,000 ×g for 24 h. Ten fractions (F1-10) were collected from top to bottom. Fractions with the highest EV content were further purified by ultracentrifugation, size exclusion, or bind-elute chromatography. Efficiency and purity were assessed by Western blots. Morphology and size distribution of particles were examined by dynamic light scattering and electron microscopy (EM). Results: The highest band intensities of EV markers Alix, Tsg101 and CD81 were detected by Western blot in F6 of small-scale DGUC (61.5 ± 10.4%; 48.1 ± 5.8%; 41.9 ± 3.8%, respectively) at a density of 1.128-1.174 g/mL, where the presence of vesicles with a mean diameter of 38 ± 2 nm was confirmed by EM and DLS. Only 1.4 ± 0.5% of LDL and chylomicron marker, 3.0 ± 1.3% of HDL marker, and 9.9 ± 0.4% of albumin remained in the EV-rich F6. However, 32.8 ± 1.5% of the total fibrinogen beta was found in this fraction. Second-step purification by UC or SEC did not improve EV separation, while after BEC on HiScreen Capto Core 700 albumin and lipoprotein contamination were below detection limit in EV-rich fractions. However, BEC decreased efficiency of EV isolation, and fibrinogen was still present in EV-rich fractions. Conclusion: This is the first demonstration that DGUC is able to markedly reduce the lipoprotein content of EV isolates while it separates EVs with high efficiency. Moreover, isolation of lipoprotein- and albumin-free EVs from blood plasma can be achieved by DGUC followed by BEC, however, on the expense of reduced EV yield.

17.
Br J Pharmacol ; 175(18): 3713-3726, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29971762

RESUMEN

BACKGROUND AND PURPOSE: Incidence and severity of obesity are increasing worldwide, however, efficient and safe pharmacological treatments are not yet available. Certain MAO inhibitors reduce body weight, although their effects on metabolic parameters have not been investigated. Here, we have assessed effects of a widely used, selective MAO-B inhibitor, selegiline, on metabolic parameters in a rat model of diet-induced obesity. EXPERIMENTAL APPROACH: Male Long-Evans rats were given control (CON) or a high-fat (20%), high-sucrose (15%) diet (HFS) for 25 weeks. From week 16, animals were injected s.c. with 0.25 mg·kg-1 selegiline (CON + S and HFS + S) or vehicle (CON, HFS) once daily. Whole body, subcutaneous and visceral fat was measured by CT, and glucose and insulin tolerance were tested. Expression of glucose transporters and chemokines was assessed by quantitative RT-PCR. KEY RESULTS: Selegiline decreased whole body fat, subcutaneous- and visceral adiposity, measured by CT and epididymal fat weight in the HFS group, compared with HFS placebo animals, without influencing body weight. Oral glucose tolerance and insulin tolerance tests showed impaired glucose homeostasis in HFS and HFS + S groups, although insulin levels in plasma and pancreas were unchanged. HFS induced expression of Srebp-1c, Glut1 and Ccl3 in adipose tissue, which were alleviated by selegiline. CONCLUSIONS AND IMPLICATIONS: Selegiline reduced adiposity, changes in adipose tissue energy metabolism and adipose inflammation induced by HFS diet without affecting the increased body weight, impairment of glucose homeostasis, or behaviour. These results suggest that selegiline could mitigate harmful effects of visceral adiposity.


Asunto(s)
Adiposidad/efectos de los fármacos , Dieta Alta en Grasa , Sacarosa en la Dieta/administración & dosificación , Inhibidores de la Monoaminooxidasa/farmacología , Selegilina/farmacología , Tejido Adiposo Blanco/efectos de los fármacos , Tejido Adiposo Blanco/metabolismo , Animales , Presión Sanguínea/efectos de los fármacos , Peso Corporal/efectos de los fármacos , Quimiocina CCL3/genética , Ingestión de Energía , Glucosa/metabolismo , Transportador de Glucosa de Tipo 1/genética , Metabolismo de los Lípidos/efectos de los fármacos , Masculino , Proteínas de la Membrana/genética , Tamaño de los Órganos/efectos de los fármacos , Ratas , Ratas Long-Evans , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/genética , Sístole
18.
PLoS One ; 10(12): e0145686, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26690353

RESUMEN

BACKGROUND: Exosomes are emerging targets for biomedical research. However, suitable methods for the isolation of blood plasma-derived exosomes without impurities have not yet been described. AIM: Therefore, we investigated the efficiency and purity of exosomes isolated with potentially suitable methods; differential ultracentrifugation (UC) and size exclusion chromatography (SEC). METHODS AND RESULTS: Exosomes were isolated from rat and human blood plasma by various UC and SEC conditions. Efficiency was investigated at serial UC of the supernatant, while in case of SEC by comparing the content of exosomal markers of various fractions. Purity was assessed based on the presence of albumin. We found that the diameter of the majority of isolated particles fell into the size range of exosomes, however, albumin was also present in the preparations, when 1h UC at 4°C was applied. Furthermore, with this method only a minor fraction of total exosomes could be isolated from blood as deduced from the constant amount of exosomal markers CD63 and TSG101 detected after serial UC of rat blood plasma samples. By using UC for longer time or with shorter sedimentation distance at 4°C, or UC performed at 37°C, exosomal yield increased, but albumin impurity was still observed in the isolates, as assessed by transmission electron microscopy, dynamic light scattering and immunoblotting against CD63, TSG101 and albumin. Efficiency and purity were not different in case of using further diluted samples. By using SEC with different columns, we have found that although a minor fraction of exosomes can be isolated without significant albumin content on Sepharose CL-4B or Sephacryl S-400 columns, but not on Sepharose 2B columns, the majority of exosomes co-eluted with albumin. CONCLUSION: Here we show that it is feasible to isolate exosomes from blood plasma by SEC without significant albumin contamination albeit with low vesicle yield.


Asunto(s)
Cromatografía en Gel/métodos , Exosomas/química , Plasma/citología , Ultracentrifugación/métodos , Animales , Masculino , Plasma/química , Ratas Wistar
19.
Cardiovasc Diabetol ; 14: 151, 2015 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-26581389

RESUMEN

BACKGROUND: Remote ischemic perconditioning (RIPerC) has a promising therapeutic insight to improve the prognosis of acute myocardial infarction. Chronic comorbidities such as diabetes are known to interfere with conditioning interventions by modulating cardioprotective signaling pathways, such as e.g., mTOR pathway and autophagy. However, the effect of acute hyperglycemia on RIPerC has not been studied so far. Therefore, here we investigated the effect of acute hyperglycemia on cardioprotection by RIPerC. METHODS: Wistar rats were divided into normoglycemic (NG) and acute hyperglycemic (AHG) groups. Acute hyperglycemia was induced by glucose infusion to maintain a serum glucose concentration of 15-20 mM throughout the experimental protocol. NG rats received mannitol infusion of an equal osmolarity. Both groups were subdivided into an ischemic (Isch) and a RIPerC group. Each group underwent reversible occlusion of the left anterior descending coronary artery (LAD) for 40 min in the presence or absence of acute hyperglycemia. After the 10-min LAD occlusion, RIPerC was induced by 3 cycles of 5-min unilateral femoral artery and vein occlusion and 5-min reperfusion. After 120 min of reperfusion, infarct size was measured by triphenyltetrazolium chloride staining. To study underlying signaling mechanisms, hearts were harvested for immunoblotting after 35 min in both the NG and AHG groups. RESULTS: Infarct size was significantly reduced by RIPerC in NG, but not in the AHG group (NG + Isch: 46.27 ± 5.31 % vs. NG + RIPerC: 24.65 ± 7.45 %, p < 0.05; AHG + Isch: 54.19 ± 4.07 % vs. 52.76 ± 3.80 %). Acute hyperglycemia per se did not influence infarct size, but significantly increased the incidence and duration of arrhythmias. Acute hyperglycemia activated mechanistic target of rapamycine (mTOR) pathway, as it significantly increased the phosphorylation of mTOR and S6 proteins and the phosphorylation of AKT. In spite of a decreased LC3II/LC3I ratio, other markers of autophagy, such as ATG7, ULK1 phopsphorylation, Beclin 1 and SQSTM1/p62, were not modulated by acute hyperglycemia. Furthermore, acute hyperglycemia significantly elevated nitrative stress in the heart (0.87 ± 0.01 vs. 0.50 ± 0.04 µg 3-nitrotyrosine/mg protein, p < 0.05). CONCLUSIONS: This is the first demonstration that acute hypreglycemia deteriorates cardioprotection by RIPerC. The mechanism of this phenomenon may involve an acute hyperglycemia-induced increase in nitrative stress and activation of the mTOR pathway.


Asunto(s)
Arritmias Cardíacas/fisiopatología , Autofagia , Hiperglucemia/metabolismo , Precondicionamiento Isquémico Miocárdico , Infarto del Miocardio/patología , Daño por Reperfusión Miocárdica/patología , Estrés Fisiológico , Animales , Proteínas Reguladoras de la Apoptosis/metabolismo , Arritmias Cardíacas/etiología , Proteína 7 Relacionada con la Autofagia , Homólogo de la Proteína 1 Relacionada con la Autofagia , Beclina-1 , Proteínas de Choque Térmico/metabolismo , Hiperglucemia/complicaciones , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Infarto del Miocardio/complicaciones , Daño por Reperfusión Miocárdica/complicaciones , Fosforilación , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ratas , Ratas Wistar , Proteína Sequestosoma-1 , Índice de Severidad de la Enfermedad , Transducción de Señal , Serina-Treonina Quinasas TOR/metabolismo , Tirosina/análogos & derivados , Tirosina/metabolismo , Enzimas Activadoras de Ubiquitina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...