Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Science ; 373(6559): 1122-1125, 2021 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-34516833

RESUMEN

Nematicity is ubiquitous in the electronic phases of iron-based superconductors. The order parameter that characterizes the nematic phase has been investigated in momentum space, but its real-space arrangement remains largely unexplored. We use linear dichroism (LD) in a low-temperature laser­photoemission electron microscope to map out the nematic order parameter of nonmagentic FeSe and antiferromagnetic BaFe2(As0.87P0.13)2. In contrast to structural domains, which have atomic-scale domain walls, the LD patterns in both materials show peculiar sinusoidal waves of electronic nematicity with wavelengths more than 1000 times as long as the unit cell. Our findings put strong constraints on the theoretical investigation of electronic nematicity.

2.
J Phys Condens Matter ; 32(17): 175703, 2020 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-31923904

RESUMEN

We report here the superconducting properties of a Laves phase superconductor SrIr2, which has a cubic MgCu2 structure. SrIr2 is a type-II superconductor, with a T c of 5.9 K. The estimated superconducting parameters of lower critical field µ 0 H c1 and upper critical field µ 0 H c2, coherence length ξ(0), penetration depth λ(0) and Ginzburg-Landau (GL) parameter κ(0) are approximately µ 0 H c1 = 101 Oe, µ 0 H c2(0) = 5.9 T, ξ(0) = 7.47 nm, λ(0) = 237 nm, and κ(0) = 31.7, respectively. The specific-heat data indicate that SrIr2 is a strong-coupling superconductor because the value of ΔC/γT c is approximately 1.71, which is larger than the value of 1.43 that is expected from the BCS theory. The physical properties obtained in this study are explained well by theoretical calculations including spin-orbit coupling (SOC). This result indicates that the physical properties of SrIr2 are strongly affected by the presence of SOC.

3.
Sci Rep ; 4: 7292, 2014 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-25465027

RESUMEN

We report peculiar momentum-dependent anisotropy in the superconducting gap observed by angle-resolved photoemission spectroscopy in BaFe2(As(1-x)P(x))2 (x = 0.30, Tc = 30 K). Strongly anisotropic gap has been found only in the electron Fermi surface while the gap on the entire hole Fermi surfaces are nearly isotropic. These results are inconsistent with horizontal nodes but are consistent with modified s ± gap with nodal loops. We have shown that the complicated gap modulation can be theoretically reproduced by considering both spin and orbital fluctuations.

5.
Phys Rev B Condens Matter ; 45(12): 6587-6592, 1992 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-10000418
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...