Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Nano ; 18(1): 858-873, 2024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-38108289

RESUMEN

Colloidal semiconductor nanocrystals are an important class of materials which have many desirable optoelectronic properties. In their bulk phases, gallium- and aluminum-containing III-V materials such as GaAs, GaP, and Al1-xGaxAs represent some of the most technologically important semiconductors. However, their colloidal synthesis by traditional methods is difficult due to the high temperatures needed to crystallize these highly covalent materials and the extreme reactivity of Ga- and Al- precursors toward organic solvents at such high temperatures. A recently developed paradigm shift in the synthesis of these materials is to use molten inorganic salts as solvents to prepare Ga- containing III-V colloidal nanocrystals by cation exchange of the corresponding indium pnictide (InPn) colloidal nanocrystals. There have been several successful applications of molten salt solvents to prepare III-phosphide colloidal nanocrystals. However, little is known about the nature of these reaction environments at the relevant reaction conditions and synthesis of III-arsenide colloidal nanocrystals remains challenging. Herein we report a detailed study on cation exchange of InPn nanocrystals using nominally Lewis basic molten salt solvents with added gallium halides. Surprisingly, these salt systems phase separate into two immiscible phases, and the nanocrystals preferentially segregate to one of the phases. Using a suite of in situ spectroscopy tools, we identify the phase the nanocrystals segregate to as Lewis neutral alkali tetrahalogallate molten salts. We apply in situ high-temperature Raman spectroscopy to identify the chemical species present in several molten salt compositions at experimentally relevant reaction conditions to elucidate a molecular basis for the reactivity observed. We then employ Lewis neutral KGaI4 molten salts to prepare high-quality In1-xGaxAs and In1-xGaxP nanocrystals and demonstrate that deviation from Lewis neutral conditions accelerate nanocrystal decomposition in the case of III-arsenide materials. Further, we expand to KAlI4-based molten salts to prepare In1-x-yGaxAlyAs nanocrystals which represent an example of solution-synthesized quaternary III-V nanocrystals. These insights provide a molecular basis for the rational development of molten salt solvents, thus allowing the preparation of a diverse array of multicomponent III-V colloidal nanocrystals.

2.
Sci Adv ; 9(42): eadh2410, 2023 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-37862422

RESUMEN

Quantum dot (QD) solids are promising optoelectronic materials; further advancing their device functionality requires understanding their energy transport mechanisms. The commonly invoked near-field Förster resonance energy transfer (FRET) theory often underestimates the exciton hopping rate in QD solids, yet no consensus exists on the underlying cause. In response, we use time-resolved ultrafast stimulated emission depletion (STED) microscopy, an ultrafast transformation of STED to spatiotemporally resolve exciton diffusion in tellurium-doped cadmium selenide-core/cadmium sulfide-shell QD superlattices. We measure the concomitant time-resolved exciton energy decay due to excitons sampling a heterogeneous energetic landscape within the superlattice. The heterogeneity is quantified by single-particle emission spectroscopy. This powerful multimodal set of observables provides sufficient constraints on a kinetic Monte Carlo simulation of exciton transport to elucidate a composite transport mechanism that includes both near-field FRET and previously neglected far-field emission/reabsorption contributions. Uncovering this mechanism offers a much-needed unified framework in which to characterize transport in QD solids and additional principles for device design.

3.
Nanotechnology ; 35(1)2023 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-37703845

RESUMEN

Scanning transmission electron microscopy is a common tool used to study the atomic structure of materials. It is an inherently multimodal tool allowing for the simultaneous acquisition of multiple information channels. Despite its versatility, however, experimental workflows currently rely heavily on experienced human operators and can only acquire data from small regions of a sample at a time. Here, we demonstrate a flexible pipeline-based system for high-throughput acquisition of atomic-resolution structural data using an all-piezo sample stage applied to large-scale imaging of nanoparticles and multimodal data acquisition. The system is available as part of the user program of the Molecular Foundry at Lawrence Berkeley National Laboratory.

4.
J Am Chem Soc ; 145(30): 16429-16448, 2023 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-37466972

RESUMEN

Semiconductors are commonly divided into materials with direct or indirect band gaps based on the relative positions of the top of the valence band and the bottom of the conduction band in crystal momentum (k) space. It has, however, been debated if k is a useful quantum number to describe the band structure in quantum-confined nanocrystalline systems, which blur the distinction between direct and indirect gap semiconductors. In bulk III-V semiconductor alloys like In1-xGaxP, the band structure can be tuned continuously from the direct- to indirect-gap by changing the value of x. The effect of strong quantum confinement on the direct-to-indirect transition in this system has yet to be established because high-quality colloidal nanocrystal samples have remained inaccessible. Herein, we report one of the first systematic studies of ternary III-V nanocrystals by utilizing an optimized molten-salt In-to-Ga cation exchange protocol to yield bright In1-xGaxP/ZnS core-shell particles with photoluminescence quantum yields exceeding 80%. We performed two-dimensional solid-state NMR studies to assess the alloy homogeneity and the extent of surface oxidation in In1-xGaxP cores. The radiative decay lifetime for In1-xGaxP/ZnS monotonically increases with higher gallium content. Transient absorption studies on In1-xGaxP/ZnS nanocrystals demonstrate signatures of direct- and indirect-like behavior based on the presence or absence, respectively, of excitonic bleach features. Atomistic electronic structure calculations based on the semi-empirical pseudopotential model are used to calculate absorption spectra and radiative lifetimes and evaluate band-edge degeneracy; the resulting calculated electronic properties are consistent with experimental observations. By studying photoluminescence characteristics at elevated temperatures, we demonstrate that a reduced lattice mismatch at the III-V/II-VI core-shell interface can enhance the thermal stability of emission. These insights establish cation exchange in molten inorganic salts as a viable synthetic route to nontoxic, high-quality In1-xGaxP/ZnS QD emitters with desirable optoelectronic properties.

5.
Chem Rev ; 123(12): 7890-7952, 2023 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-37311205

RESUMEN

Solution-processed semiconductors are in demand for present and next-generation optoelectronic technologies ranging from displays to quantum light sources because of their scalability and ease of integration into devices with diverse form factors. One of the central requirements for semiconductors used in these applications is a narrow photoluminescence (PL) line width. Narrow emission line widths are needed to ensure both color and single-photon purity, raising the question of what design rules are needed to obtain narrow emission from semiconductors made in solution. In this review, we first examine the requirements for colloidal emitters for a variety of applications including light-emitting diodes, photodetectors, lasers, and quantum information science. Next, we will delve into the sources of spectral broadening, including "homogeneous" broadening from dynamical broadening mechanisms in single-particle spectra, heterogeneous broadening from static structural differences in ensemble spectra, and spectral diffusion. Then, we compare the current state of the art in terms of emission line width for a variety of colloidal materials including II-VI quantum dots (QDs) and nanoplatelets, III-V QDs, alloyed QDs, metal-halide perovskites including nanocrystals and 2D structures, doped nanocrystals, and, finally, as a point of comparison, organic molecules. We end with some conclusions and connections, including an outline of promising paths forward.

6.
J Am Chem Soc ; 145(12): 6648-6657, 2023 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-36939571

RESUMEN

Graphene liquid cell transmission electron microscopy is a powerful technique to visualize nanoscale dynamics and transformations at atomic resolution. However, the solution in liquid cells is known to be affected by radiolysis, and the stochastic formation of graphene liquid cells raises questions about the solution chemistry in individual pockets. In this study, electron energy loss spectroscopy (EELS) was used to evaluate a model encapsulated solution, aqueous CeCl3. First, the ratio between the O K-edge and Ce M-edge was used to approximate the concentration of cerium salt in the graphene liquid cell. It was determined that the ratio between oxygen and cerium was orders of magnitude lower than what is expected for a dilute solution, indicating that the encapsulated solution is highly concentrated. To probe how this affects the chemistry within graphene liquid cells, the oxidation of Ce3+ was measured using time-resolved parallel EELS. It was determined that Ce3+ oxidizes faster under high electron fluxes, but reaches the same steady-state Ce4+ concentration regardless of flux. The time-resolved concentration profiles enabled direct comparison to radiolysis models, which indicate rate constants and g-values of certain molecular species are substantially different in the highly concentrated environment. Finally, electron flux-dependent gold nanocrystal etching trajectories showed that gold nanocrystals etch faster at higher electron fluxes, correlating well with the Ce3+ oxidation kinetics. Understanding the effects of the highly concentrated solution in graphene liquid cells will provide new insight on previous studies and may open up opportunities to systematically study systems in highly concentrated solutions at high resolution.

7.
ACS Nano ; 2023 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-36621974

RESUMEN

Group III nitrides are of great technological importance for electronic devices. These materials have been widely manufactured via high-temperature methods such as physical vapor transport (PVT), chemical vapor deposition (CVD), and hydride vapor phase epitaxy (HVPE). The preparation of group III nitrides by colloidal synthesis methods would provide significant advantages in the form of optical tunability via size and shape control and enable cost reductions through scalable solution-based device integration. Solution syntheses of III-nitride nanocrystals, however, have been scarce, and the quality of the synthesized products has been unsatisfactory for practical use. Here, we report that incorporating a molten salt phase in solution synthesis can provide a viable option for producing crystalline III-nitride nanomaterials. Crystalline GaN and AlN nanomaterials can be grown in a biphasic molten-salt/organic-solvent mixture under an ammonia atmosphere at moderate temperatures (less than 300 °C) and stabilized under ambient conditions by postsynthetic treatment with organic surface ligands. We suggest that microscopic reversibility of monomer attachment, which is essential for crystalline growth, can be achieved in molten salt during the nucleation and the growth of the III-nitride nanocrystals. We also show that increased ammonia pressure increases the size of the GaN nanocrystals produced. This work demonstrates that use of molten salt and high-pressure reactants significantly expands the chemical scope of solution synthesis of inorganic nanomaterials.

8.
ACS Nano ; 16(10): 16067-16076, 2022 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-36121002

RESUMEN

Microscale patterning of colloidal nanocrystal (NC) films is important for their integration in devices. Here, we introduce the direct optical patterning of all-inorganic NCs without the use of additional photosensitive ligands or additives. We determined that photoexposure of ligand-stripped, "bare" NCs in air significantly reduces their solubility in polar solvents due to photo-oxidation of surface ions. Doses as low as 20 mJ/cm2 could be used; the only obvious criterion for material selection is that the NCs need to have significant absorption at the irradiation wavelength. However, transparent NCs can still be patterned by mixing them with suitably absorbing NCs. This approach enabled the patterning of bare ZnSe, CdSe, ZnS, InP, CeO2, CdSe/CdS, and CdSe/ZnS NCs as well as mixtures of ZrO2 or HfO2 NCs with ZnSe NCs. Optical, X-ray photoelectron, and infrared spectroscopies show that solubility loss results from desorption of bound solvent due to photo-oxidation of surface ions. We also demonstrate two approaches, compatible with our patterning method, for modulating the porosity and refractive index of NC films. Block copolymer templating decreases the film density, and thus the refractive index, by introducing mesoporosity. Alternatively, hot isostatic pressing increases the packing density and refractive index of NC layers. For example, the packing fraction of a ZnS NC film can be increased from 0.51 to 0.87 upon hot isostatic pressing at 450 °C and 15 000 psi. Our findings demonstrate that direct lithography by photo-oxidation of bare NC surfaces is an accessible patterning method for facilitating the exploration of more complex NC device architectures while eliminating the influence of bulky or insulating surfactants.

9.
Sci Adv ; 8(32): eabq1700, 2022 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-35947667

RESUMEN

The size and shape of semiconductor nanocrystals govern their optical and electronic properties. Liquid cell transmission electron microscopy (LCTEM) is an emerging tool that can directly visualize nanoscale chemical transformations and therefore inform the precise synthesis of nanostructures with desired functions. However, it remains difficult to controllably investigate the reactions of semiconductor nanocrystals with LCTEM, because of the highly reactive environment formed by radiolysis of liquid. Here, we harness the radiolysis processes and report the single-particle etching trajectories of prototypical semiconductor nanomaterials with well-defined crystalline facets. Lead selenide nanocubes represent an isotropic structure that retains the cubic shape during etching via a layer-by-layer mechanism. The anisotropic arrow-shaped cadmium selenide nanorods have polar facets terminated by either cadmium or selenium atoms, and the transformation trajectory is driven by etching the selenium-terminated facets. LCTEM trajectories reveal how nanoscale shape transformations of semiconductors are governed by the reactivity of specific facets in liquid environments.

10.
Nano Lett ; 22(16): 6545-6552, 2022 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-35952655

RESUMEN

The goal of this work is to determine the kinetic factors that govern isovalent cation exchange in III-V colloidal quantum dots using molten salts as the solvent and cation source. We focus on the reactions of InP + GaI3→ In1-xGaxP and InAs + GaI3→ In1-xGaxAs to create technologically important ternary III-V phases. We find that the molten salt reaction medium causes the transformation of nearly spherical InP nanocrystals to tetrahedron-shaped In1-xGaxP nanocrystals. Furthermore, we determine that the activation energy for the cation exchange reaction is 0.9 eV for incorporation of Ga into InP and 1.2 eV for incorporation of Ga into InAs, both much lower than the measured values in bulk semiconductors. Next, we use powder XRD simulations to constrain our understanding of the structure of the In1-xGaxP nanocrystals. Together our results reveal several important features of molten salt-mediated cation exchange and provide guidance for future development of these materials.


Asunto(s)
Nanopartículas , Puntos Cuánticos , Cationes , Cinética , Nanopartículas/química , Semiconductores
11.
Nano Lett ; 22(1): 389-395, 2022 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-34935383

RESUMEN

The goal of this work is to identify factors which modulate structural order in 2D self-assembled superlattices of polygon-shaped colloidal nanocrystals. Using combined experimental and simulation techniques, we quantify order in superlattices of hexagonal prism-shaped CdSe/CdS nanocrystals and cube-shaped CsPbBr3 nanocrystals. Superlattices derived from cube-shaped nanocrystals display less translational order compared to hexagonal prism-shaped nanocrystals both experimentally and in simulations. This effect can be attributed to geometric considerations inherent to the combined rotational and translational symmetries of different polygonal shapes and their superlattices. Cubes form a simple cubic lattice where nanocrystals can slide without steric overlap, whereas hexagonal prisms interlock, preventing translation. Regarding orientational order, cube assemblies display a narrower orientation distribution. Intuitively, hexagonal prisms are a more "spherical" shape compared to cubes. The results presented here outline a conceptual framework for identifying superlattice structures which favor translationally and orientationally ordered self-assembled superlattices.


Asunto(s)
Nanopartículas , Nanopartículas/química
12.
Nano Lett ; 21(18): 7609-7616, 2021 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-34478618

RESUMEN

Microscale patterning of solution-processed nanomaterials is important for integration in functional devices. Colloidal lead halide perovskite (LHP) nanocrystals (NCs) can be particularly challenging to pattern due to their incompatibility with polar solvents and lability of surface ligands. Here, we introduce a direct photopatterning approach for LHP NCs through the binding and subsequent cleavage of a photosensitive oxime sulfonate ester (-C═N-OSOO-). The photosensitizer binds to the NCs through its sulfonate group and is cleaved at the N-O bond during photoirradiation with 405 nm light. This bond cleavage decreases the solubility of the NCs, which allows patterns to emerge upon development with toluene. Postpatterning ligand exchange results in photoluminescence quantum yields of up to 79%, while anion exchange provides tunability in the emission wavelength. The patterned NC films show photoconductive behavior, demonstrating that good electrical contact between the NCs can be established.


Asunto(s)
Electrónica , Nanopartículas , Ligandos
13.
J Am Chem Soc ; 143(30): 11703-11713, 2021 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-34292703

RESUMEN

Graphene liquid cell transmission electron microscopy (TEM) has enabled the observation of a variety of nanoscale transformations. Yet understanding the chemistry of the liquid cell solution and its impact on the observed transformations remains an important step toward translating insights from liquid cell TEM to benchtop chemistry. Gold nanocrystal etching can be used as a model system to probe the reactivity of the solution. FeCl3 has been widely used to promote gold oxidation in bulk and liquid cell TEM studies, but the roles of the halide and iron species have not been fully elucidated. In this work, we observed the etching trajectories of gold nanocrystals in different iron halide solutions. We observed an increase in gold nanocrystal etch rate going from Cl-- to Br-- to I--containing solutions. This is consistent with a mechanism in which the dominant role of halides is as complexation agents for oxidized gold species. Additionally, the mechanism through which FeCl3 induces etching in liquid cell TEM remains unclear. Ground-state bleaching of the Fe(III) absorption band observed through pulse radiolysis indicates that iron may react with Cl2·- radicals to form an oxidized transient species under irradiation. Complete active space self-consistent field (CASSCF) calculations indicate that the FeCl3 complex is oxidized to an Fe species with an OH radical ligand. Together our data indicate that an oxidized Fe species may be the active oxidant, while halides modulate the etch rate by tuning the reduction potential of gold nanocrystals.

14.
J Am Chem Soc ; 143(31): 12082-12089, 2021 08 11.
Artículo en Inglés | MEDLINE | ID: mdl-34319106

RESUMEN

Liquid cell electron microscopy enables the study of nanoscale transformations in solvents with high spatial and temporal resolution, but for the technique to achieve its potential requires a new level of control over the reactivity caused by radical generation under electron beam irradiation. An understanding of how to control electron-solvent interactions is needed to further advance the study of structural dynamics for complex materials at the nanoscale. We developed an approach that scavenges radicals with redox species that form well-defined redox couples and control the electrochemical potential in situ. This approach enables the observation of electrochemical structural dynamics at near-atomic resolution with precise control of the liquid environment. Analysis of nanocrystal etching trajectories indicates that this approach can be generalized to several chemical systems. The ability to simultaneously observe heterogeneous reactions at near-atomic resolution and precisely control the electrochemical potential enables the fundamental study of complex nanoscale dynamics with unprecedented detail.

15.
JACS Au ; 1(3): 316-327, 2021 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-33778811

RESUMEN

The synthesis quality of artificial inorganic nanocrystals is most often assessed by transmission electron microscopy (TEM) for which high-throughput advances have dramatically increased both the quantity and information richness of metal nanoparticle (mNP) characterization. Existing automated data analysis algorithms of TEM mNP images generally adopt a supervised approach, requiring a significant effort in human preparation of labeled data that reduces objectivity, efficiency, and generalizability. We have developed an unsupervised algorithm AutoDetect-mNP for automated analysis of TEM images that objectively extracts morphological information on convex mNPs from TEM images based on their shape attributes, requiring little to no human input in the process. The performance of AutoDetect-mNP is tested on two data sets of bright field TEM images of Au nanoparticles with different shapes and further extended to palladium nanocubes and cadmium selenide quantum dots, demonstrating that the algorithm is quantitatively reliable and can thus serve as a generalizable measure of the morphology distributions of any mNP synthesis. The AutoDetect-mNP algorithm will aid in future developments of high-throughput characterization of mNPs and the future advent of time-resolved TEM studies that can investigate reaction mechanisms of mNP synthesis and reactivity.

16.
ACS Nano ; 15(3): 4115-4133, 2021 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-33596042

RESUMEN

Mechanoluminescent materials, which emit light in response to elastic deformation, are demanded for use as in situ stress sensors. ZnS doped with Mn is known to exhibit one of the lowest reported thresholds for appearance of mechanoluminescence, with repeatable light emission under contact pressure <10 MPa. The physical basis for such behavior remains as yet unclear. Here, reliable microscopic detection of mechanoluminescence of single ZnS:Mn microparticles, in combination with nanoscale structural characterization, provides evidence that the mechanoluminescent properties of these particles result from interplay between a non-centrosymmetric crystal lattice and its defects, viz., dislocations and stacking faults. Statistical analysis of the distributions of mechanoluminescence energy release trajectories reveals two distinct mechanisms of excitation: one attributable to a piezo-phototronic effect and the other due to dislocation motion. At pressures below 8.1 MPa, both mechanisms contribute to mechanoluminescent output, with a dominant contribution from the piezo-phototronic mechanism. In contrast, above 8.1 MPa, dislocation motion is the primary excitation source. For the piezo-phototronic mechanism, we propose a specific model that accounts for elastic ZnS:Mn mechanoluminescence under very low pressure. The charged interfaces in stacking faults lead to the presence of filled traps, which otherwise would be empty in the absence of the built-in electric field. Upon application of external stress, local enhancement of the piezoelectric field at the stacking faults' interfaces facilitates release of the trapped carriers and subsequent luminescence. This field enhancement explains how <10 MPa pressure produces thousands of photons.

17.
Acc Chem Res ; 54(6): 1419-1429, 2021 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-33576596

RESUMEN

ConspectusOriented atomic attachment of colloidal inorganic nanocrystals represents a powerful synthetic method for preparing complex inorganic superstructures. Examples include fusion of nanocrystals into dimer and superlattice structures. If the attachment were perfect throughout, then the resulting materials would have single crystal-like alignment of the individual nanocrystals' atomic lattices. While individual colloidal nanocrystals typically are free of many defects, there are a multitude of pathways that can generate defects upon nanocrystal attachment. These attachment generated defects are typically undesirable, and thus developing strategies to favor defect-free attachment or heal defective interfaces are essential. There may also be some cases where attachment-derived defects are desirable. In this Account, we summarize our current understanding of how these defects arise, in order to offer guidance to those who are designing nanocrystal derived solids.The small size of inorganic nanocrystals means short diffusion lengths to the surface, which favor the formation of nanocrystal building blocks with pristine atomic structures. Upon attachment, however, there are numerous pathways that can lead to atomic scale defects, and bulk crystal dislocation theory provides an invaluable guide to understanding these phenomena. As an example, an atomic step edge can be incorporated into the interface leading to an extra half-plane of atoms, known as an edge dislocation. These dislocations can be well described by the Burgers vector description of dislocations, which geometrically identifies planes in which a dislocation can move. Our in situ measurements have verified that bulk dislocation theory predictions for 1D defects hold true at few-nanometer length scales in PbTe and CdSe nanocrystal interfaces. Ultimately, the applicability of dislocation theory to nanocrystal attachment enables the predictive design of attachment to prevent or facilitate healing of defects upon nanocrystal attachment. We applied similar logic to understand formation of planar (2D) defects such as stacking faults upon nanocrystal attachment. Again concepts from bulk crystal defect crystallography can identify attachment pathways that can prevent or deterministically form planar defects upon nanocrystal attachment. The concepts we discuss work well for identifying favorable attachment geometries for nanocrystal pairs; however it is currently unclear how to translate these ideas to near-simultaneous multiparticle attachment. Geometric frustration, which prevents nanocrystal rotation, and yet-to-be considered defect generation pathways unique to multiparticle attachment complicate defect-free superlattice attachment. New imaging methods now allow for the direct observation of local attachment trajectories and may enable improved understanding of such multiparticle phenomena. With further refinement, a unified framework for understanding and ultimately eliminating structural defects in fused nanocrystal superstructures may well be achievable in coming years.

18.
ACS Nano ; 15(2): 2251-2262, 2021 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-33377761

RESUMEN

By combining colloidal nanocrystal synthesis, self-assembly, and solution phase epitaxial growth techniques, we developed a general method for preparing single dot thick atomically attached quantum dot (QD) superlattices with high-quality translational and crystallographic orientational order along with state-of-the-art uniformity in the attachment thickness. The procedure begins with colloidal synthesis of hexagonal prism shaped core/shell QDs (e.g., CdSe/CdS), followed by liquid subphase self-assembly and immobilization of superlattices on a substrate. Solution phase epitaxial growth of additional semiconductor material fills in the voids between the particles, resulting in a QD-in-matrix structure. The photoluminescence emission spectra of the QD-in-matrix structure retains characteristic 0D electronic confinement. Importantly, annealing of the resulting structures removes inhomogeneities in the QD-QD inorganic bridges, which our atomistic electronic structure calculations demonstrate would otherwise lead to Anderson-type localization. The piecewise nature of this procedure allows one to independently tune the size and material of the QD core, shell, QD-QD distance, and the matrix material. These four choices can be tuned to control many properties (degree of quantum confinement, quantum coupling, band alignments, etc.) depending on the specific applications. Finally, cation exchange reactions can be performed on the final QD-in-matrix, as demonstrated herein with a CdSe/CdS to HgSe/HgS conversion.

19.
Chem Sci ; 11(26): 6690-6700, 2020 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-32953030

RESUMEN

The incorporation of second-row transition metals into metal-organic frameworks could greatly improve the performance of these materials across a wide variety of applications due to the enhanced covalency, redox activity, and spin-orbit coupling of late-row metals relative to their first-row analogues. Thus far, however, the synthesis of such materials has been limited to a small number of metals and structural motifs. Here, we report the syntheses of the two-dimensional metal-organic framework materials (H2NMe2)2Nb2(Cl2dhbq)3 and Mo2(Cl2dhbq)3 (H2Cl2dhbq = 3,6-dichloro-2,5-dihydroxybenzoquinone), which feature mononuclear niobium or molybdenum metal nodes and are formed through reactions driven by metal-to-ligand electron transfer. Characterization of these materials via X-ray absorption spectroscopy suggests a local trigonal prismatic coordination geometry for both niobium and molybdenum, consistent with their increased covalency relative to related first-row transition metal compounds. A combination of vibrational spectroscopy, magnetic susceptibility, and electronic conductivity measurements reveal that these two frameworks possess distinct electronic structures. In particular, while the niobium compound displays evidence for redox-trapping and strong magnetic interactions, the molybdenum phase is valence-delocalized with evidence of large polaron formation. Weak interlayer interactions in the neutral molybdenum phase enable solvent-assisted exfoliation to yield few-layer hexagonal nanosheets. Together, these results represent the first syntheses of metal-organic frameworks containing mononuclear niobium and molybdenum nodes, establishing a route to frameworks incorporating a more diverse range of second- and third-row transition metals with increased covalency and the potential for improved charge transport and stronger magnetic coupling.

20.
ACS Nano ; 13(11): 12322-12344, 2019 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-31246407

RESUMEN

The goal of this work is to identify favored pathways for preparation of defect-resilient attached wurtzite CdX (X = S, Se, Te) nanocrystals. We seek guidelines for oriented attachment of faceted nanocrystals that are most likely to yield pairs of nanocrystals with either few or no electronic defects or electronic defects that are in and of themselves desirable and stable. Using a combination of in situ high-resolution transmission electron microscopy (HRTEM) and electronic structure calculations, we evaluate the relative merits of atomic attachment of wurtzite CdSe nanocrystals on the {11̅00} or {112̅0} family of facets. Pairwise attachment on either facet can lead to perfect interfaces, provided the nanocrystal facets are perfectly flat and the angles between the nanocrystals can adjust during the assembly. Considering defective attachment, we observe for {11̅00} facet attachment that only one type of edge dislocation forms, creating deep hole traps. For {112̅0} facet attachment, we observe that four distinct types of extended defects form, some of which lead to deep hole traps whereas others only to shallow hole traps. HRTEM movies of the dislocation dynamics show that dislocations at {11̅00} interfaces can be removed, albeit slowly. Whereas only some extended defects at {112̅0} interfaces could be removed, others were trapped at the interface. Based on these insights, we identify the most resilient pathways to atomic attachment of pairs of wurtzite CdX nanocrystals and consider how these insights can translate to the creation of electronically useful materials from quantum dots with other crystal structures.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...