Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 6: 30542, 2016 07 28.
Artículo en Inglés | MEDLINE | ID: mdl-27464714

RESUMEN

RNA interference (RNAi) is a promising new technology for corn rootworm control. This paper presents the discovery of new gene targets - dvssj1 and dvssj2, in western corn rootworm (WCR). Dvssj1 and dvssj2 are orthologs of the Drosophila genes snakeskin (ssk) and mesh, respectively. These genes encode membrane proteins associated with smooth septate junctions (SSJ) which are required for intestinal barrier function. Based on bioinformatics analysis, dvssj1 appears to be an arthropod-specific gene. Diet based insect feeding assays using double-stranded RNA (dsRNA) targeting dvssj1 and dvssj2 demonstrate targeted mRNA suppression, larval growth inhibition, and mortality. In RNAi treated WCR, injury to the midgut was manifested by "blebbing" of the midgut epithelium into the gut lumen. Ultrastructural examination of midgut epithelial cells revealed apoptosis and regenerative activities. Transgenic plants expressing dsRNA targeting dvssj1 show insecticidal activity and significant plant protection from WCR damage. The data indicate that dvssj1 and dvssj2 are effective gene targets for the control of WCR using RNAi technology, by apparent suppression of production of their respective smooth septate junction membrane proteins located within the intestinal lining, leading to growth inhibition and mortality.


Asunto(s)
Escarabajos/genética , Proteínas de Insectos/genética , Control Biológico de Vectores/métodos , Interferencia de ARN , Zea mays/genética , Animales , Tracto Gastrointestinal/fisiología , Tracto Gastrointestinal/ultraestructura , Regulación de la Expresión Génica , Larva/crecimiento & desarrollo , Raíces de Plantas/genética , Plantas Modificadas Genéticamente , ARN Bicatenario
2.
J Econ Entomol ; 109(3): 1369-1377, 2016 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-27016600

RESUMEN

Several Bt maize events expressing various insecticidal Cry protein genes have been commercialized for management of western corn rootworm, Diabrotica virgifera virgifera LeConte (Coleoptera: Chrysomelidae). We used high efficacy (>99.7%) experimental maize events that express mCry3A for selections under laboratory conditions to develop a western corn rootworm colony resistant to mCry3A at higher levels than published results. The resistance ratio (RR) to mCry3A was >97-fold based on LC 50 values in diet-based bioassays after six generations of selections when compared to that of an unselected Control colony. Using a sublethal seedling assay (SSA) method, we confirmed that the colony had no cross-resistance to maize event DAS-59122-7, which expresses Cry34/35Ab. Reciprocal crosses between the mCry3A-resistant colony and the susceptible colony were performed to test the inheritance of resistance. Larval survival and development evaluated by the SSA method indicated that resistance to mCry3A was inherited autosomally and was incompletely recessive (h = 0.23-0.25). Specific binding of mCry3A to brush border membrane vesicles of midgut tissue revealed reduced binding in the resistant colony when compared to binding in the susceptible colony. This is the first report where resistance in western corn rootworm has been shown to involve reduced binding of a Cry3-class protein in midgut tissue.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA