Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Phys Rev Lett ; 129(14): 142502, 2022 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-36240396

RESUMEN

The root mean square radii of the proton density distribution in ^{16-24}O derived from measurements of charge changing cross sections with a carbon target at ∼900A MeV together with the matter radii portray thick neutron skin for ^{22-24}O despite ^{22,24}O being doubly magic. Imprints of the shell closures at N=14 and 16 are reflected in local minima of their proton radii that provide evidence for the tensor interaction causing them. The radii agree with ab initio calculations employing the chiral NNLO_{sat} interaction, though skin thickness predictions are challenged. Shell model predictions agree well with the data.


Asunto(s)
Neutrones , Protones , Carbono
2.
Phys Rev Lett ; 128(24): 242502, 2022 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-35776479

RESUMEN

The isomer depletion of ^{93m}Mo was recently reported [Chiara et al., Nature (London) 554, 216 (2018)NATUAS0028-083610.1038/nature25483] as the first direct observation of nuclear excitation by electron capture (NEEC). However, the measured excitation probability of 1.0(3)% is far beyond the theoretical expectation. In order to understand the inconsistency between theory and experiment, we produce the ^{93m}Mo nuclei using the ^{12}C(^{86}Kr,5n) reaction at a beam energy of 559 MeV and transport the reaction residues to a detection station far away from the target area employing a secondary beam line. The isomer depletion is expected to occur during the slowdown process of the ions in the stopping material. In such a low γ-ray background environment, the signature of isomer depletion is not observed, and an upper limit of 2×10^{-5} is estimated for the excitation probability. This is consistent with the theoretical expectation. Our findings shed doubt on the previously reported NEEC phenomenon and highlight the necessity and feasibility of further experimental investigations for reexamining the isomer depletion under low γ-ray background.

3.
Phys Rev Lett ; 124(22): 222504, 2020 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-32567915

RESUMEN

We report the measurement of reaction cross sections (σ_{R}^{ex}) of ^{27,29}F with a carbon target at RIKEN. The unexpectedly large σ_{R}^{ex} and derived matter radius identify ^{29}F as the heaviest two-neutron Borromean halo to date. The halo is attributed to neutrons occupying the 2p_{3/2} orbital, thereby vanishing the shell closure associated with the neutron number N=20. The results are explained by state-of-the-art shell model calculations. Coupled-cluster computations based on effective field theories of the strong nuclear force describe the matter radius of ^{27}F but are challenged for ^{29}F.

4.
Phys Rev Lett ; 124(10): 102501, 2020 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-32216444

RESUMEN

Interaction cross sections for ^{42-51}Ca on a carbon target at 280 MeV/nucleon have been measured for the first time. The neutron number dependence of derived root-mean-square matter radii shows a significant increase beyond the neutron magic number N=28. Furthermore, this enhancement of matter radii is much larger than that of the previously measured charge radii, indicating a novel growth in neutron skin thickness. A simple examination based on the Fermi-type distribution, and mean field calculations point out that this anomalous enhancement of the nuclear size beyond N=28 results from an enlargement of the core by a sudden increase in the surface diffuseness of the neutron density distribution, which implies the swelling of the bare ^{48}Ca core in Ca isotopes beyond N=28.

5.
Nat Commun ; 9(1): 1594, 2018 04 23.
Artículo en Inglés | MEDLINE | ID: mdl-29686394

RESUMEN

The nuclear shell structure, which originates in the nearly independent motion of nucleons in an average potential, provides an important guide for our understanding of nuclear structure and the underlying nuclear forces. Its most remarkable fingerprint is the existence of the so-called magic numbers of protons and neutrons associated with extra stability. Although the introduction of a phenomenological spin-orbit (SO) coupling force in 1949 helped in explaining the magic numbers, its origins are still open questions. Here, we present experimental evidence for the smallest SO-originated magic number (subshell closure) at the proton number six in 13-20C obtained from systematic analysis of point-proton distribution radii, electromagnetic transition rates and atomic masses of light nuclei. Performing ab initio calculations on 14,15C, we show that the observed proton distribution radii and subshell closure can be explained by the state-of-the-art nuclear theory with chiral nucleon-nucleon and three-nucleon forces, which are rooted in the quantum chromodynamics.

6.
Phys Rev Lett ; 121(24): 242501, 2018 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-30608744

RESUMEN

The isospin character of p-n pairs at large relative momentum has been observed for the first time in the ^{16}O ground state. A strong population of the J,T=1,0 state and a very weak population of the J,T=0,1 state were observed in the neutron pickup domain of ^{16}O(p,pd) at 392 MeV. This strong isospin dependence at large momentum transfer is not reproduced by the distorted-wave impulse approximation calculations with known spectroscopic amplitudes. The results indicate the presence of high-momentum protons and neutrons induced by the tensor interactions in the ground state of ^{16}O.

7.
Phys Rev Lett ; 117(20): 202501, 2016 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-27886506

RESUMEN

Excitation spectra of ^{11}C are measured in the ^{12}C(p,d) reaction near the η^{'} emission threshold. A proton beam extracted from the synchrotron SIS-18 at GSI with an incident energy of 2.5 GeV impinges on a carbon target. The momenta of deuterons emitted at 0° are precisely measured with the fragment separator (FRS) operated as a spectrometer. In contrast to theoretical predictions on the possible existence of deeply bound η^{'}-mesic states in carbon nuclei, no distinct structures are observed associated with the formation of bound states. The spectra are analyzed to set stringent constraints on the formation cross section and on the hitherto barely known η^{'}-nucleus interaction.

8.
Phys Rev Lett ; 117(10): 102501, 2016 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-27636470

RESUMEN

Proton radii of ^{12-19}C densities derived from first accurate charge changing cross section measurements at 900A MeV with a carbon target are reported. A thick neutron surface evolves from ∼0.5 fm in ^{15}C to ∼1 fm in ^{19}C. The halo radius in ^{19}C is found to be 6.4±0.7 fm as large as ^{11}Li. Ab initio calculations based on chiral nucleon-nucleon and three-nucleon forces reproduce the radii well.

9.
Phys Rev Lett ; 113(13): 132501, 2014 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-25302882

RESUMEN

The first determination of radii of point proton distribution (proton radii) of (12-17)B from charge-changing cross sections (σ(CC)) measurements at the FRS, GSI, Darmstadt is reported. The proton radii are deduced from a finite-range Glauber model analysis of the σ(CC). The radii show an increase from ¹³B to ¹7B and are consistent with predictions from the antisymmetrized molecular dynamics model for the neutron-rich nuclei. The measurements show the existence of a thick neutron surface with neutron-proton radius difference of 0.51(0.11) fm in ¹7B.

10.
Phys Rev Lett ; 112(11): 112502, 2014 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-24702355

RESUMEN

Gamow-Teller (GT) transitions in atomic nuclei are sensitive to both nuclear shell structure and effective residual interactions. The nuclear GT excitations were studied for the mass number A = 42, 46, 50, and 54 "f-shell" nuclei in ((3)He, t) charge-exchange reactions. In the (42)Ca → (42)Sc reaction, most of the GT strength is concentrated in the lowest excited state at 0.6 MeV, suggesting the existence of a low-energy GT phonon excitation. As A increases, a high-energy GT phonon excitation develops in the 6-11 MeV region. In the (54)Fe → (54)Co reaction, the high-energy GT phonon excitation mainly carries the GT strength. The existence of these two GT phonon excitations are attributed to the 2 fermionic degrees of freedom in nuclei.

11.
Phys Rev Lett ; 107(6): 062502, 2011 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-21902316

RESUMEN

A benchmark experiment on (208)Pb shows that polarized proton inelastic scattering at very forward angles including 0° is a powerful tool for high-resolution studies of electric dipole (E1) and spin magnetic dipole (M1) modes in nuclei over a broad excitation energy range to test up-to-date nuclear models. The extracted E1 polarizability leads to a neutron skin thickness r(skin) = 0.156(-0.021)(+0.025) fm in (208)Pb derived within a mean-field model [Phys. Rev. C 81, 051303 (2010)], thereby constraining the symmetry energy and its density dependence relevant to the description of neutron stars.

12.
Phys Rev Lett ; 106(20): 202501, 2011 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-21668223

RESUMEN

The low-lying states in ¹°6Zr and ¹°8Zr have been investigated by means of ß-γ and isomer spectroscopy at the radioactive isotope beam factory (RIBF), respectively. A new isomer with a half-life of 620 ± 150 ns has been identified in ¹°8Zr. For the sequence of even-even Zr isotopes, the excitation energies of the first 2⁺ states reach a minimum at N = 64 and gradually increase as the neutron number increases up to N = 68, suggesting a deformed subshell closure at N = 64. The deformed ground state of ¹°8Zr indicates that a spherical subshell gap predicted at N = 70 is not large enough to change the ground state of ¹°8Zr to the spherical shape. The possibility of a tetrahedral shape isomer in ¹°8Zr is also discussed.

13.
Phys Rev Lett ; 106(5): 052502, 2011 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-21405387

RESUMEN

The ß-decay half-lives of 38 neutron-rich isotopes from (36)Kr to (43)Tc have been measured; the half-lives of (100)Kr, (103-105)Sr, (106-108)Y, (108-110)Zr, (111,112)Nb, (112-115)Mo, and (116,117)Tc are reported here. The results when compared with previous standard models indicate an overestimation in the predicted half-lives by a factor of 2 or more in the A≈110 region. A revised model based on the second generation gross theory of ß decay better predicts the measured half-lives and suggests a more rapid flow of the rapid neutron-capture process (r-matter flow) through this region than previously predicted.

14.
Phys Rev Lett ; 102(1): 012502, 2009 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-19257184

RESUMEN

The structure of neutron-rich isotopes 60Cr and 62Cr was studied via proton inelastic scattering in inverse kinematics. The deformation lengths (delta) for 60Cr and 62Cr were extracted as 1.12(16) and 1.36(14) fm, respectively, providing evidence for enhanced collectivity in these nuclei. An excited state at 1180(10) keV in 62Cr was identified for the first time. We adopted 4;{+} as its spin and parity, leading to the rapid increase of the Ex(4;{+})/E_{x}(2;{+}) ratio, which indicates the development of large deformation in 62Cr near N=40. Importance of the admixture of the gd-shell component above N=40 is also discussed by comparing with a modern shell model calculation.

15.
Phys Rev Lett ; 96(18): 182501, 2006 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-16712361

RESUMEN

This Letter reports on the (1)H((28)Ne, (28)Ne) and (1)H((28)Ne, (27)Ne) reactions studied at intermediate energy using a liquid hydrogen target. From the cross section populating the first 2(+) excited state of (28)Ne, and using the previously determined BE(2) value, the neutron quadrupole transition matrix element has been calculated to be M(n)=13.8 +/- 3.7 fm(2). In the neutron knockout reaction, two low-lying excited states were populated in (27)Ne. Only one of them can be interpreted by the sd shell model while the additional state may intrude from the fp shell. These experimental observations are consistent with the presence of fp shell configurations at low excitation energy in (27,28)Ne nuclei caused by a vanishing N=20 shell gap at Z=10.

16.
Phys Rev Lett ; 92(6): 062501, 2004 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-14995232

RESUMEN

The electric quadrupole transition from the first 2(+) state to the ground 0(+) state in 16C is studied through measurement of the lifetime by a recoil shadow method applied to inelastically scattered radioactive 16C nuclei. The measured mean lifetime is 77+/-14(stat)+/-19(syst) ps. The central value of mean lifetime corresponds to a B(E2;2+(1)-->0(+)) value of 0.63e(2) fm(4), or 0.26 Weisskopf units. The transition strength is found to be anomalously small compared to the empirically predicted value.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...