Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Allergy ; 79(5): 1146-1165, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38372149

RESUMEN

Tight junction (TJ) proteins establish a physical barrier between epithelial cells, playing a crucial role in maintaining tissue homeostasis by safeguarding host tissues against pathogens, allergens, antigens, irritants, etc. Recently, an increasing number of studies have demonstrated that abnormal expression of TJs plays an essential role in the development and progression of inflammatory airway diseases, including chronic obstructive pulmonary disease, asthma, allergic rhinitis, and chronic rhinosinusitis (CRS) with or without nasal polyps. Among them, CRS with nasal polyps is a prevalent chronic inflammatory disease that affects the nasal cavity and paranasal sinuses, leading to a poor prognosis and significantly impacting patients' quality of life. Its pathogenesis primarily involves dysfunction of the nasal epithelial barrier, impaired mucociliary clearance, disordered immune response, and excessive tissue remodeling. Numerous studies have elucidated the pivotal role of TJs in both the pathogenesis and response to traditional therapies in CRS. We therefore to review and discuss potential factors contributing to impair and repair of TJs in the nasal epithelium based on their structure, function, and formation process.


Asunto(s)
Mucosa Nasal , Rinitis , Sinusitis , Uniones Estrechas , Humanos , Sinusitis/terapia , Sinusitis/inmunología , Sinusitis/etiología , Uniones Estrechas/metabolismo , Rinitis/terapia , Rinitis/etiología , Enfermedad Crónica , Mucosa Nasal/metabolismo , Mucosa Nasal/inmunología , Animales , Susceptibilidad a Enfermedades , Rinosinusitis
2.
J Allergy Clin Immunol ; 152(6): 1444-1459.e14, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37777019

RESUMEN

BACKGROUND: Chronic rhinosinusitis (CRS) is an upper airway inflammation disease associated with hypoxia-mediated inflammation. The effect of hypoxia-inducible factor 1α (HIF-1α) on NOD-like receptor family pyrin domain containing 3 (NLRP3) inflammasome activation in the pathogenesis of sinonasal mucosa is unclear. OBJECTIVE: We investigated the effect and mechanism of HIF-1α on NLRP3 inflammasome activation in the primary human nasal epithelial cells (hNECs). METHODS: We measured the expression levels of HIF-1α and the NLRP3 inflammasome in nasal biopsy samples and hNECs derived from negative controls (healthy) and patients with CRS with and without nasal polyps, then further analyzed the specific mechanism of HIF-1α regulation of the NLRP3 inflammasome and its effect on hNEC differentiation. RESULTS: Increased mRNA and protein expression levels of HIF-1α and the NLRP3 inflammasome were found in all CRS biopsy samples. HIF-1α enhanced expression of phosphorylated NLRP3 (S295) in both HEK293T cells and hNECs; it also promoted recruitment of caspase-1 and apoptotic speck-like protein containing caspase recruitment domain (aka ASC) by NLRP3. HIF-1α also improved NLRP3's stability by preventing NLRP3 degradation caused by hypoxia-mediated inflammation. In addition, HIF-1α could also increase expression of Mucin5AC and decrease expression of α-tubulin by promoting activation of the NLRP3 inflammasome in hNECs. In addition, HIF-1α could also directly promote P63 expression in hNECs. CONCLUSION: HIF-1α could potentially induce cilia loss and enhance the proliferation of goblet cells, possibly mediated by the regulation of NLRP3 phosphorylation in CRS inflammation.


Asunto(s)
Rinosinusitis , Sinusitis , Humanos , Inflamasomas/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Células HEK293 , Inflamación/patología , Hipoxia
3.
Allergy Asthma Immunol Res ; 15(4): 512-525, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37153980

RESUMEN

PURPOSE: The abnormal expression of tight junction (TJ) plays a vital role in the pathogenesis of chronic rhinosinusitis with nasal polyps (CRSwNP). However, there is no appropriate tool to distinguish and diagnose epithelial barrier defects in clinical practice. This study aimed to evaluate the predictive value of claudin-3 for epithelial barrier dysfunction in CRSwNP. METHODS: In this study, TJ protein levels were evaluated by real-time quantitative polymerase chain reaction, immunofluorescent, and immunohistochemistry staining in control subjects and CRSwNP patients. The receiver operating characteristic (ROC) curve was created to assess the predictive value of TJ breakdown in clinical outcomes. In vitro, human nasal epithelial cells were cultured at the air-liquid interface to analyze the transepithelial electrical resistance (TER) level. RESULTS: The expression levels of occludin, tricellulin, claudin-3, and claudin-10 were decreased (all P < 0.05), and those of claudin-1 was increased (P < 0.05) in CRSwNP patients as compared to healthy subjects. Additionally, claudin-3 and occludin levels were negatively correlated with the computed tomography score in CRSwNP (all P < 0.05), and the ROC curve indicated that the claudin-3 level had the most predictive accuracy in evaluating epithelial barrier disruption (area under the curve = 0.791, P < 0.001). Finally, the time-series analysis showed the highest correlation coefficient between TER and claudin-3 (cross-correlation function = 0.75). CONCLUSION: In this study, we suggest that claudin-3 could be a valuable biomarker for predicting nasal epithelial barrier defects and disease severity in CRSwNP.

4.
Cells ; 12(8)2023 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-37190061

RESUMEN

Our previous study revealed that prolonged human rhinovirus (HRV) infection rapidly induces antiviral interferons (IFNs) and chemokines during the acute stage of infection. It also showed that expression levels of RIG-I and interferon-stimulated genes (ISGs) were sustained in tandem with the persistent expression of HRV RNA and HRV proteins at the late stage of the 14-day infection period. Some studies have explored the protective effects of initial acute HRV infection on secondary influenza A virus (IAV) infection. However, the susceptibility of human nasal epithelial cells (hNECs) to re-infection by the same HRV serotype, and to secondary IAV infection following prolonged primary HRV infection, has not been studied in detail. Therefore, the aim of this study was to investigate the effects and underlying mechanisms of HRV persistence on the susceptibility of hNECs against HRV re-infection and secondary IAV infection. We analyzed the viral replication and innate immune responses of hNECs infected with the same HRV serotype A16 and IAV H3N2 at 14 days after initial HRV-A16 infection. Prolonged primary HRV infection significantly diminished the IAV load of secondary H3N2 infection, but not the HRV load of HRV-A16 re-infection. The reduced IAV load of secondary H3N2 infection may be explained by increased baseline expression levels of RIG-I and ISGs, specifically MX1 and IFITM1, which are induced by prolonged primary HRV infection. As is congruent with this finding, in those cells that received early and multi-dose pre-treatment with Rupintrivir (HRV 3C protease inhibitor) prior to secondary IAV infection, the reduction in IAV load was abolished compared to the group without pre-treatment with Rupintrivir. In conclusion, the antiviral state induced from prolonged primary HRV infection mediated by RIG-I and ISGs (including MX1 and IFITM1) can confer a protective innate immune defense mechanism against secondary influenza infection.


Asunto(s)
Virus de la Influenza A , Gripe Humana , Humanos , Interferones/farmacología , Interferones/genética , Subtipo H3N2 del Virus de la Influenza A , Rhinovirus , Antivirales , Carga Viral , Reinfección , Células Epiteliales/metabolismo , Virus de la Influenza A/genética
5.
Proc Natl Acad Sci U S A ; 120(13): e2213584120, 2023 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-36943879

RESUMEN

Virtually all living cells are encased in glycans. They perform key cellular functions such as immunomodulation and cell-cell recognition. Yet, how their composition and configuration affect their functions remains enigmatic. Here, we constructed isogenic capsule-switch mutants harboring 84 types of capsular polysaccharides (CPSs) in Streptococcus pneumoniae. This collection enables us to systematically measure the affinity of structurally related CPSs to primary human nasal and bronchial epithelial cells. Contrary to the paradigm, the surface charge does not appreciably affect epithelial cell binding. Factors that affect adhesion to respiratory cells include the number of rhamnose residues and the presence of human-like glycomotifs in CPS. Besides, pneumococcal colonization stimulated the production of interleukin 6 (IL-6), granulocyte-macrophage colony-stimulating factor (GM-CSF), and monocyte chemoattractantprotein-1 (MCP-1) in nasal epithelial cells, which also appears to be dependent on the serotype. Together, our results reveal glycomotifs of surface polysaccharides that are likely to be important for colonization and survival in the human airway.


Asunto(s)
Células Epiteliales , Streptococcus pneumoniae , Humanos , Streptococcus pneumoniae/genética , Streptococcus pneumoniae/metabolismo , Sistema Respiratorio , Polisacáridos/metabolismo , Nariz
6.
J Inflamm Res ; 15: 3661-3675, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35783248

RESUMEN

Purpose: Radiotherapy (RT) is the mainstay treatment for head and neck cancers. However, chronic and recurrent upper respiratory tract infections and inflammation have been commonly reported in patients post-RT. The underlying mechanisms remain poorly understood. Method and Materials: We used a well-established model of human nasal epithelial cells (hNECs) that forms a pseudostratified layer in the air-liquid interface (ALI) and exposed it to single or repeated moderate dose γ-irradiation (1Gy). We assessed the DNA damage and evaluated the biological properties of hNECs at different time points post-RT. Further, we explored the host immunity alterations in irradiated hNECs with polyinosinic-polycytidylic acid sodium salt (poly [I:C]) and lipopolysaccharides (LPS). Results: IR induced DNA double strand breaks (DSBs) and triggered DNA damage response in hNECs. Repeated IR significantly reduced basal cell proliferation with low expression of p63/KRT5 and Ki67, induced cilia loss and inhibited mucus secretion. In addition, IR decreased ZO-1 expression and caused a significant decline in the transepithelial electrical resistance (TEER). Moreover, hyperreactive response against pathogen invasion and disrupted epithelial host defense can be observed in hNECs exposed to repeated IR. Conclusion: Our study suggests that IR induced prolonged structural and functional impairments of hNECs may contribute to patients post-RT with increased risk of developing chronic and recurrent upper respiratory tract infection and inflammation.

7.
Allergy ; 77(9): 2778-2793, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35274302

RESUMEN

BACKGROUND: Human rhinoviruses (HRVs) are frequently associated with asthma exacerbations, and have been found in the airways of asthmatic patients. While HRV-induced acute infection is well-documented, it is less clear whether the nasal epithelium sustains prolonged HRV infections along with the associated activation of host immune responses. OBJECTIVE: To investigate sustainably regulated host responses of human nasal epithelial cells (hNECs) during HRV persistence. METHODS: Using a time-course study, HRV16 persistence and viral replication dynamics were established using an in vitro infection model of hNECs. RNA sequencing was performed on hNECs in the early and late stages of infection at 3 and 14 days post-infection (dpi), respectively. The functional enrichment of differentially expressed genes (DEGs) was evaluated using gene ontology (GO) and Ingenuity pathway analysis. RESULTS: HRV RNA and protein expression persisted throughout prolonged infections, even after decreased production of infectious virus progeny. GO analysis of unique DEGs indicated altered regulation of pathways related to ciliary function and airway remodeling at 3 dpi and serine-type endopeptidase activity at 14 dpi. The functional enrichment of shared DEGs between the two time-points was related to interferon (IFN) and cytoplasmic pattern recognition receptor (PRR) signaling pathways. Validation of the sustained regulation of candidate genes confirmed the persistent expression of RIG-I and revealed its close co-regulation with interferon-stimulated genes (ISGs) during HRV persistence. CONCLUSIONS: The persistence of HRV RNA does not necessarily indicate an active infection during prolonged infection. The sustained expression of RIG-I and ISGs in response to viral RNA persistence highlights the importance of assessing how immune-activating host factors can change during active HRV infection and the immune regulation that persists thereafter.


Asunto(s)
Asma , Receptores de Ácido Retinoico/metabolismo , Rhinovirus , Antivirales , Células Epiteliales/metabolismo , Humanos , Interferones , Mucosa Nasal , ARN/metabolismo , Rhinovirus/fisiología , Transcriptoma
9.
J Inflamm Res ; 14: 2769-2780, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34234504

RESUMEN

BACKGROUND: Epithelial cytokines including IL-25, IL-33 and thymic stromal lymphopoietin (TLSP) are recently established as drivers of type 2 chronic inflammatory diseases such as chronic rhinosinusitis with nasal polyps (CRSwNP). Here, we further confirmed the increased expression of IL-25 in CRSwNP and investigated potential contributors of IL-25 in CRSwNP epithelium. METHODS: Sixty CRSwNP, 25 CRSsNP and 15 healthy control tissues were examined for IL-25 expression and for the accompanying type 2 inflammatory cytokines. We then tested different respiratory virus infections on human nasal epithelial cells (hNECs) for their ability to trigger IL-25 expression. In addition, we subjected hNECs generated from CRSwNP tissues to pretreatment with recombinant interferon-alpha (IFN-α) prior to viral infection to evaluate IFN effects on IL-25 induction. RESULTS: We confirmed that significantly enhanced levels of IL-25 were observed in CRSwNP tissues, and that IL-25 expression correlated with type 2 inflammatory cytokine expression. In vitro, we observed significantly elevated IL-25 in hNECs infected with influenza A virus as early as 24 hours post-infection (hpi), regardless of tissue origin, and IL-25 correlated positively with viral load. While other respiratory viruses exhibited increasing trends of IL-25, these were not significant at the time-points tested. IFN-α treatment of CRSwNP epithelium was found to exert bimodal effects, ie IFN-α treatment alone induced moderate IL-25 expression, whereas IFN-α pretreatment of hNECs before influenza infection significantly diminished IL-25 induction by active influenza virus infection. CONCLUSION: We have authenticated the observation of elevated IL-25 in CRSwNP, which is correlated with type 2 inflammatory cytokines. Notably, we identified influenza virus infection as a potential contributor of IL-25 in both control and CRSwNP epithelium during active infection. This IL-25 induction can be abated by IFN-α pretreatment which ameliorated active influenza infection. TRIAL REGISTRATION: Chictr.org.cn ChiCTR-BON-16010179, Registered 18 December 2016, http://www.chictr.org.cn/showproj.aspx?proj=17331. The authors agree on the sharing of deidentified participant data where it pertains to request directly related to the data in this article when contacted (Haiyu Hong; honghy@mail.sysu.edu.cn).

10.
J Inflamm Res ; 14: 2979-2991, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34262323

RESUMEN

BACKGROUND: Nasal inverted papilloma (NIP) is defined based on its histological characteristic of inverted epithelium growth into the stroma. The inversion can result in epithelial growth in the underlying connective tissue stroma when the basement membrane completely separates from the epithelial layer. To date, such inversion mechanism underlying NIP's pathological phenomenon is unknown. Therefore, we hypothesized that mediators and soluble proteins released by neutrophils, the most predominant infiltrating cells in NIP, is vital in causing the epithelial changes and pathogenesis of NIP. METHODS: We collected 37 NIP tissues from patients who underwent surgical removal of NIP and performed hematoxylin-eosin (HE), immunohistochemical, and immunofluorescence staining to analyze in-depth the basic characteristics of NIP, including detecting the expression and distribution of MMPs and associated factors in NIP. Western blotting and quantitative real-time PCR were further performed to analyze the protein and mRNA expression levels of specific factors including MMPs, HIF-1α, and tissue inhibitors of metalloproteinases (TIMPs). RESULTS: We observed finger-like projections that insert into the epithelium in NIP tissue as its main characteristics. The projections contain fibroblasts, extracellular matrix, capillaries, and infiltrating inflammatory cells. We found abundant neutrophils clustered at the finger-like projection of NIP, and also noted MMP-1 and MMP-9 were up-regulated in NIP (p<0.05), whereas TIMP-1/3 was decreased. The expression level of HIF-1α was also found to be increased in NIP tissue. We further showed that MMP-9 and HIF-1α were mainly expressed by neutrophils and were predominantly observed in the finger-like projections that contribute to the NIP pathology. CONCLUSION: Upregulation and release of MMP-9 and HIF-1α from infiltrating neutrophils may cause damage to the epithelial basement membrane and epithelial clefts, forming finger-like projections with angiogenesis and fibroblasts insertion, resulting in epithelial growth in the tissue stroma, a typical histo-pathological characteristic in NIP.

11.
Front Cell Dev Biol ; 9: 625251, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33937228

RESUMEN

BACKGROUND: Nasal inverted papilloma (NIP) is a common benign tumor. Yes-associated protein (YAP) is the core effector molecule of the Hippo pathway, which regulates the proliferation and differentiation of airway epithelium. While its role in proliferation may be connected to NIP formation, no definitive association has been made between them. METHODS: We compared the difference of YAP expression and proliferation level between the control inferior turbinate, NP (nasal polyps), and NIP groups. In addition, we further used PCR, immunofluorescence, and immunohistochemistry to investigate YAP's role in the proliferation and differentiation of the nasal epithelium and inflammatory cell infiltration, correlating them with different grades of epithelial remodeling. We further used an IL-13 remodeling condition to investigate YAP's role in differentiation in an in vitro air-liquid interface (ALI) human nasal epithelial cell (hNECs) model. Finally, we also explored the correlation between YAP expression and clinical indicators of NIP. RESULTS: The expression of YAP/active YAP in the NIP group was significantly higher than that in the NP group and control group. Moreover, within the NIP group, the higher grade of epithelial remodeling was associated with higher YAP induced proliferation, leading to reduced ciliated cells and goblet cells. The finding was further verified using an IL-13 remodeling condition in differentiating ALI hNECs. Furthermore, YAP expression was positively correlated with proliferation and neutrophil infiltration in NIP. YAP expression was also significantly increased in NIP patients with adverse outcomes. CONCLUSION: Abnormal expression of YAP/active YAP is associated with proliferation, differentiation, neutrophil infiltration, and adverse outcome in NIP and may present a novel target for diagnosis and intervention in NIP.

12.
Inflammation ; 44(5): 1937-1948, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-33999330

RESUMEN

Mucus secretion and its composition are vital in the maintenance of airway health, among which hypoxia-inducible factors (HIFs) are thought to be involved in the regulation of mucin synthesis and regulation. Nasal mucus composition difference between healthy individuals and chronic rhinosinusitis (CRS) patients may contribute to the pathology of chronic nasal diseases, but so far, their role has yet to be completely understood. Nasal biopsy specimens were obtained from 24 healthy subjects and 99 patients with CRS without (CRSsNP, n=36) or with (CRSwNP, n=63) nasal polyps. Immunohistochemical (IHC) and immunofluorescent (IF) staining, quantitative real-time PCR, and western blot were performed to compare the nasal mucus composition between the subjects. Areas of the serous gland and mucous gland were both significantly increased in CRSsNP patients. In CRSwNP patients, a decrease in submucosal gland density and a marked increase in goblet cells were observed. The major gel-forming mucins in the sinonasal mucosa of CRSsNP and CRSwNP are MUC5B and MUC5AC respectively. Mucous cells are found in a higher proportion in both CRSsNP and CRSwNP. The proportion of MUC5AC-positive goblet cells was increased in CRSwNP. The mRNA level of HIF-2α was significantly increased in CRS, and both HIF-1α and HIF-2α were expressed in serous cell but not mucous cell. Over secretion and altered composition of mucus are observed in sinonasal mucosa of CRS, which was mainly associated with glandular hyperplasia in CRSsNP and goblet cell hyperplasia in CRSwNP. Mucus abnormality compromised both non-specific and specific antimicrobial capabilities in the sinonasal mucosa. HIF expression may contribute to differences in mucin synthesis and serous gland regulation, which needs further investigation to understand the pathology of CRS.


Asunto(s)
Moco , Mucosa Nasal/patología , Pólipos Nasales/patología , Rinitis/patología , Sinusitis/patología , Adulto , Células Cultivadas , Enfermedad Crónica , Femenino , Humanos , Masculino , Persona de Mediana Edad , Moco/metabolismo , Mucosa Nasal/metabolismo , Pólipos Nasales/metabolismo , Rinitis/metabolismo , Sinusitis/metabolismo , Adulto Joven
13.
J Vis Exp ; (168)2021 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-33720120

RESUMEN

The early interactions between the nasal epithelial layer and the innate immune cells during viral infections remains an under-explored area. The significance of innate immunity signaling in viral infections has increased substantially as patients with respiratory infections who exhibit high innate T cell activation show a better disease outcome. Hence, dissecting these early innate immune interactions allows the elucidation of the processes that govern them and may facilitate the development of potential therapeutic targets and strategies for dampening or even preventing early progression of viral infections. This protocol details a versatile model that can be used to study early crosstalk, interactions, and activation of innate immune cells from factors secreted by virally infected airway epithelial cells. Using an H3N2 influenza virus (A/Aichi/2/1968) as the representative virus model, innate cell activation of co-cultured peripheral blood mononuclear cells (PBMCs) has been analyzed using flow cytometry to investigate the subsets of cells that are activated by the soluble factors released from the epithelium in response to the viral infection. The results demonstrate the gating strategy for differentiating the subsets of cells and reveal the clear differences between the activated populations of PBMCs and their crosstalk with the control and infected epithelium. The activated subsets can then be further analyzed to determine their functions as well as molecular changes specific to the cells. Findings from such a crosstalk investigation may uncover factors that are important for the activation of vital innate cell populations, which are beneficial in controlling and suppressing the progression of viral infection. Furthermore, these factors can be universally applied to different viral diseases, especially to newly emerging viruses, to dampen the impact of such viruses when they first circulate in naïve human populations.


Asunto(s)
Inmunidad Innata , Subtipo H3N2 del Virus de la Influenza A/inmunología , Gripe Humana/inmunología , Gripe Humana/virología , Modelos Biológicos , Células 3T3 , Animales , Diferenciación Celular/efectos de los fármacos , Células Cultivadas , Técnicas de Cocultivo , Impedancia Eléctrica , Células Epiteliales/efectos de los fármacos , Células Epiteliales/inmunología , Células Nutrientes/citología , Humanos , Subtipo H3N2 del Virus de la Influenza A/efectos de los fármacos , Células Asesinas Naturales/efectos de los fármacos , Células Asesinas Naturales/inmunología , Leucocitos Mononucleares/efectos de los fármacos , Leucocitos Mononucleares/virología , Ratones , Mitomicina/farmacología , Mucina 5AC/metabolismo , Mucosa Nasal/patología , Tubulina (Proteína)/metabolismo
16.
Front Cell Dev Biol ; 8: 572749, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33102478

RESUMEN

Tight junctions (TJs) are intercellular structures which are essential for epithelial barrier function and play an important role in antimicrobial defense. Epithelium dysfunction and type-2-skewed inflammation are two main pathological phenomena of chronic rhinosinusitis with nasal polyps (CRSwNP). However, the effect of pro-inflammatory type-2 cytokine IL-13 on TJs in CRSwNP is poorly understood. Nasal biopsies of CRSwNP patients and in vitro IL-13-matured human nasal epithelial cells (hNECs) were used to analyze epithelial markers and TJ proteins. Epithelium permeability, transepithelial electrical resistance (TEER), expression of TJs were quantified for IL-13-matured hNECs and that with RV infection. The expression of occludin, claudin-3, and ZO-1 were significantly decreased in CRSwNP biopsies and in hNECs after IL-13 treatment. IL-13 treatment increased epithelium permeability, decreased TEER and altered hNECs composition resulting in lesser ciliated cells and mucus over-secretion. Interestingly, claudin-3 is selectively expressed on ciliated cells. While RV infection induced minimal changes to TJs, the IL-13-matured hNECs has reduced capacity for upregulation of IFN-λ1 and CXCL10 but further increased the expression of TSLP upon RV infection. These findings suggested that IL-13-mediated dysfunction of TJs and compromised epithelial barrier. IL-13-induced cilia loss conferred lowered viral replication and impaired antiviral responses of nasal epithelium against RV infection.

17.
Science ; 370(6521)2020 12 04.
Artículo en Inglés | MEDLINE | ID: mdl-33093214

RESUMEN

Immune sensor proteins are critical to the function of the human innate immune system. The full repertoire of cognate triggers for human immune sensors is not fully understood. Here, we report that human NACHT, LRR, and PYD domains-containing protein 1 (NLRP1) is activated by 3C proteases (3Cpros) of enteroviruses, such as human rhinovirus (HRV). 3Cpros directly cleave human NLRP1 at a single site between Glu130 and Gly131 This cleavage triggers N-glycine-mediated degradation of the autoinhibitory NLRP1 N-terminal fragment via the cullinZER1/ZYG11B complex, which liberates the activating C-terminal fragment. Infection of primary human airway epithelial cells by live human HRV triggers NLRP1-dependent inflammasome activation and interleukin-18 secretion. Our findings establish 3Cpros as a pathogen-derived trigger for the human NLRP1 inflammasome and suggest that NLRP1 may contribute to inflammatory diseases of the airway.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Reguladoras de la Apoptosis/metabolismo , Cisteína Endopeptidasas/metabolismo , Inmunidad Innata , Inflamasomas/metabolismo , Mucosa Respiratoria/virología , Rhinovirus/enzimología , Proteínas Virales/metabolismo , Proteasas Virales 3C , Proteínas Adaptadoras Transductoras de Señales/química , Proteínas Reguladoras de la Apoptosis/química , Proteínas de Ciclo Celular/metabolismo , Proteínas Cullin/metabolismo , Glutamina/química , Glutamina/metabolismo , Glicina/química , Glicina/metabolismo , Células HEK293 , Células HeLa , Humanos , Interleucina-18/metabolismo , Proteínas NLR , Proteolisis
18.
Radiat Oncol ; 15(1): 222, 2020 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-32977822

RESUMEN

BACKGROUND: Squamous metaplasia (SM) is an irreversible form of airway epithelial remodeling. Hyperproliferation of basal cells was observed in squamous metaplastic epithelium of chronically inflamed airway. However, the association of such aberrant proliferation of basal cells with SM in the nasal epithelium after radiation damage remains unclear. The aim of this study was to investigate SM and accompanying levels of p63+Krt5+ (basal cell markers) cells in the nasal epithelium of patients with radiation-induced chronic rhinosinusitis (CRSr) and patients with chronic rhinosinusitis without nasal polyps (CRSsNP) compared to healthy controls. METHODS: We assessed the prevalence of SM and the expression of p63+, Krt5+, p63+Krt5+, and Ki67+ cells through immunofluorescence(IF) staining of the inferior turbinate (IT) tissues from patients with CRSr (n = 36), CRSsNP (n = 33) and controls (n = 28). RESULTS: The prevalence of SM and the number of p63+Krt5+ cells were both significantly increased in patients with CRSr compared to patients with CRSsNP and controls. The number of Ki67+ cells were both significantly increased in patients with CRSr and CRSsNP compared to controls, but the ratio of Ki67+ cells to p63+Krt5+ cells was significantly lower in patients with CRSr compared to patients with CRSsNP. In patients with CRSr, an increased number of p63+Krt5+ basal cells was observed in SM epithelium compared to non-SM epithelium. CONCLUSION: SM is increased in the nasal epithelium of patients with CRSr, in which aberrant levels of p63+Krt5+ basal cells serves as an important pathologic feature in the squamous metaplastic epithelium.


Asunto(s)
Carcinoma Basocelular/patología , Carcinoma de Células Escamosas/patología , Queratina-5/metabolismo , Metaplasia/patología , Radioterapia/efectos adversos , Rinitis/patología , Sinusitis/patología , Factores de Transcripción/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Adulto , Anciano , Carcinoma Basocelular/metabolismo , Carcinoma de Células Escamosas/etiología , Estudios de Casos y Controles , Enfermedad Crónica , Femenino , Humanos , Masculino , Metaplasia/etiología , Metaplasia/metabolismo , Persona de Mediana Edad , Mucosa Nasal/metabolismo , Mucosa Nasal/patología , Pronóstico , Rinitis/etiología , Sinusitis/etiología
19.
Radiother Oncol ; 148: 116-125, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32353641

RESUMEN

BACKGROUND AND PURPOSE: Chronic and recurrent upper respiratory tract infection and inflammation is common in patients with nasopharyngeal carcinoma (NPC) post chemo-radiotherapy (CRT). Whether it is due to intrinsic (e.g., host-defense mechanisms of the epithelium), epigenetic or extrinsic factors is not fully understood. MATERIALS AND METHODS: Tissue biopsies of the middle turbinate (MT) and inferior turbinate (IT) from NPC patients after CRT (mean of 3 years, n = 39) were compared with the IT biopsies from healthy subjects (n = 44). The epithelial ultrastructure was examined by transmission electron microscope (TEM). mRNA and protein expressions of epithelial stem/progenitor cells markers, as well markers of cell proliferation and differentiation markers was analyzed. RESULTS: Abnormal epithelial architecture was observed in all tissue samples of NPC patients. Significantly decreased expression levels of mRNA and protein levels for p63 (basal cells), Ki67 (cell proliferation), p63+/KRT5+ (epithelial stem/progenitor cells), MUC5AC and MUC5B (secretary proteins from goblet cells), alpha-tubulin, beta-tubulin and TAp73 (ciliated cells), DNAH5 and DNAI1 and RSPH4A (microtubule assemblies of motile cilia), FOXJ1 and CP110 (ciliogenesis-associated markers) were evident in MT and IT biopsies from NPC patients when compared to healthy controls. CONCLUSION: CRT causes long-term defects of epithelial barrier functions and increases the susceptibility of these patients to upper respiratory tract infection and inflammation.


Asunto(s)
Células Epiteliales , Neoplasias Nasofaríngeas , Quimioradioterapia , Humanos , Mucosa Nasal , Carcinoma Nasofaríngeo/genética , Neoplasias Nasofaríngeas/genética
20.
Front Cell Dev Biol ; 8: 99, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32161756

RESUMEN

Respiratory virus infection is one of the major sources of exacerbation of chronic airway inflammatory diseases. These exacerbations are associated with high morbidity and even mortality worldwide. The current understanding on viral-induced exacerbations is that viral infection increases airway inflammation which aggravates disease symptoms. Recent advances in in vitro air-liquid interface 3D cultures, organoid cultures and the use of novel human and animal challenge models have evoked new understandings as to the mechanisms of viral exacerbations. In this review, we will focus on recent novel findings that elucidate how respiratory viral infections alter the epithelial barrier in the airways, the upper airway microbial environment, epigenetic modifications including miRNA modulation, and other changes in immune responses throughout the upper and lower airways. First, we reviewed the prevalence of different respiratory viral infections in causing exacerbations in chronic airway inflammatory diseases. Subsequently we also summarized how recent models have expanded our appreciation of the mechanisms of viral-induced exacerbations. Further we highlighted the importance of the virome within the airway microbiome environment and its impact on subsequent bacterial infection. This review consolidates the understanding of viral induced exacerbation in chronic airway inflammatory diseases and indicates pathways that may be targeted for more effective management of chronic inflammatory diseases.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...