Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Rheumatology (Oxford) ; 63(2): 551-562, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-37341646

RESUMEN

OBJECTIVES: Platelets and low-density neutrophils (LDNs) are major players in the immunopathogenesis of SLE. Despite evidence showing the importance of platelet-neutrophil complexes (PNCs) in inflammation, little is known about the relationship between LDNs and platelets in SLE. We sought to characterize the role of LDNs and Toll-like receptor 7 (TLR7) in clinical disease. METHODS: Flow cytometry was used to immunophenotype LDNs from SLE patients and controls. The association of LDNs with organ damage was investigated in a cohort of 290 SLE patients. TLR7 mRNA expression was assessed in LDNs and high-density neutrophils (HDNs) using publicly available mRNA sequencing datasets and our own cohort using RT-PCR. The role of TLR7 in platelet binding was evaluated in platelet-HDN mixing studies using TLR7-deficient mice and Klinefelter syndrome patients. RESULTS: SLE patients with active disease have more LDNs, which are heterogeneous and more immature in patients with evidence of kidney dysfunction. LDNs are platelet bound, in contrast to HDNs. LDNs settle in the peripheral blood mononuclear cell (PBMC) layer due to the increased buoyancy and neutrophil degranulation from platelet binding. Mixing studies demonstrated that this PNC formation was dependent on platelet-TLR7 and that the association results in increased NETosis. The neutrophil:platelet ratio is a useful clinical correlate for LDNs, and a higher NPR is associated with past and current flares of LN. CONCLUSIONS: LDNs sediment in the upper PBMC fraction due to PNC formation, which is dependent on the expression of TLR7 in platelets. Collectively, our results reveal a novel TLR7-dependent crosstalk between platelets and neutrophils that may be an important therapeutic opportunity for LN.


Asunto(s)
Nefritis Lúpica , Neutrófilos , Animales , Humanos , Ratones , Leucocitos Mononucleares , Nefritis Lúpica/patología , Neutrófilos/metabolismo , ARN Mensajero/metabolismo , Receptor Toll-Like 7/genética
2.
Infect Dis Ther ; 11(5): 1999-2015, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36058990

RESUMEN

INTRODUCTION: AOD01 is a novel, fully human immunoglobulin (Ig) G1 neutralizing monoclonal antibody that was developed as a therapeutic against severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2). This first-in-human study assessed safety, tolerability, pharmacokinetics (PK), and pharmacodynamics of AOD01 in healthy volunteers. METHODS: Intravenous doses of AOD01 were evaluated in escalating cohorts [four single-dose cohorts (2, 5, 10, and 20 mg/kg) and one two-dose cohort (two doses of 20 mg/kg, 24 h apart)]. RESULTS: Twenty-three subjects were randomized to receive AOD01 or a placebo in blinded fashion. A total of 34 treatment-emergent adverse events (TEAEs) were reported; all were mild in severity. Related events (headache and diarrhea) were reported in one subject each. No event of infusion reactions, serious adverse event (SAE), or discontinuation due to AE were reported. The changes in laboratory parameters, vital signs, and electrocardiograms were minimal. Dose-related exposure was seen from doses 2 to 20 mg/kg as confirmed by Cmax and AUC0-tlast. The median Tmax was 1.5-3 h. Clearance was dose independent. Study results revealed long half-lives (163-465 h). Antidrug antibodies (ADA) to AOD01 were not detected among subjects, except in one subject of the two-dose cohort on day 92. Sustained ex vivo neutralization of SARS-CoV-2 was recorded until day 29 with single doses from 2 to 20 mg/kg and until day 43 with two doses of 20 mg/kg. CONCLUSIONS: AOD01 was safe and well tolerated, demonstrated dose-related PK, non-immunogenic status, and sustained ex vivo neutralization of SARS-CoV-2 after single intravenous dose ranging from 2 to 20 mg/kg and two doses of 20 mg/kg and show good potential for treatment of SARS-CoV-2 infection. (Health Sciences Authority identifier number CTA2000119).

3.
Front Immunol ; 10: 1546, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31354711

RESUMEN

The global increase in autoimmunity, together with the emerging autoimmune-related side effects of cancer immunotherapy, have furthered a need for understanding of immune tolerance and activation. Systemic lupus erythematosus (SLE) is the archetypical autoimmune disease, affecting multiple organs, and tissues. Studying SLE creates knowledge relevant not just for autoimmunity, but the immune system in general. Murine models and patient studies have provided increasing evidence for the innate immune toll like receptor-7 (TLR7) in disease initiation and progression. Here, we demonstrated that the kinase activity of the TLR7-downstream signaling molecule, interleukin-1 receptor associated kinase 4 (IRAK4), is essential for mild and severe autoimmune traits of the Sle1 and Sle1-TLR7 transgenic (Sle1Tg7) murine models, respectively. Elimination of IRAK4 signaling prevented all pathological traits associated with murine lupus, including splenomegaly with leukocyte expansion, detectable circulating antinuclear antibodies and glomerulonephritis, in both Sle1 and Sle1Tg7 mice. The expansion of germinal center B cells and increased effector memory T cell phenotypes that are typical of lupus-prone strains, were also prevented with IRAK4 kinase elimination. Analysis of renal leukocyte infiltrates confirmed our earlier findings of an expanded conventional dendritic cell (cDC) within the kidneys of nephritic mice, and this was prevented with IRAK4 kinase elimination. Analysis of TLR7 at the protein level revealed that the expression in immune cells is dependent on the TLR7-transgene itself and/or autoimmune disease factors in a cell-specific manner. Increased TLR7 protein expression in renal macrophages and cDCs correlated with disease parameters such as blood urea nitrogen (BUN) levels and the frequency of leukocytes infiltrating the kidney. These findings suggest that controlling the level of TLR7 or downstream signaling within myeloid populations may prevent chronic inflammation and severe nephritis.


Asunto(s)
Células Dendríticas/inmunología , Quinasas Asociadas a Receptores de Interleucina-1/metabolismo , Riñón/patología , Leucocitos/fisiología , Lupus Eritematoso Sistémico/metabolismo , Nefritis Lúpica/metabolismo , Macrófagos/inmunología , Receptor Toll-Like 7/metabolismo , Animales , Anticuerpos Antinucleares/sangre , Movimiento Celular , Modelos Animales de Enfermedad , Glomerulonefritis , Humanos , Inmunidad Innata , Quinasas Asociadas a Receptores de Interleucina-1/genética , Riñón/metabolismo , Nefritis Lúpica/genética , Ratones , Ratones Transgénicos , Especificidad de Órganos , Factor de Transcripción 1 de la Leucemia de Células Pre-B/genética , Factor de Transcripción 1 de la Leucemia de Células Pre-B/metabolismo , Transducción de Señal , Receptor Toll-Like 7/genética
4.
Cytometry A ; 95(3): 268-278, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30549398

RESUMEN

Neutrophil extracellular traps (NETs) are web-like structures composed of decondensed chromatin and antimicrobial proteins that are released into the extracellular space during microbial infections. This active cell death program is known as NETosis. To date, florescence microscopy is the widely accepted method for visualization and quantification of NETs. However, this method is subjective, time consuming and yields low numbers of analyzed polymorphonuclear cells (PMNs) per sample. Increasing interest has emerged on the identification of NETs using flow cytometry techniques. However, flow cytometry analysis of NETs requires particular precautions for sample preparation to obtain reproducible data. Herein, we describe a flow cytometry-based assay for high-throughput detection and quantification of NETosis in mixed cell populations. We used fluorescent-labeled antibodies against cell markers on PMNs together with a combination of nucleic acid stains to measure NETosis in whole blood (WB) and purified PMNs. Using plasma membrane-impermeable DNA-binding dye, SYTOX Orange (SO), we found that cell-appendant DNA of NETting PMNs were positive for SO and DAPI. The combination of optimally diluted antibody and nucleic acid dyes required no washing and yielded low background fluorescence. Significant correlations were found for NETosis from WB and purified PMNs. We then validated the assay by comparing with time-lapse live cell fluorescence microscopy and determined very good intraassay and interassay variances. The assay was then applied to a disease associated with NETosis, systemic lupus erythematosus (SLE). We examined PMA-induced NETosis in peripheral PMNs from SLE patients and controls and in bone marrow PMNs from multiple murine models. In summary, this assay is observer-independent and allows for rapid assessment of a large number of PMNs per sample. Use of this assay does not require sophisticated microscopic equipment like imaging flow cytometers and may be a starting point to analyze extracellular trap formation from immune cells other than PMNs. © 2018 The Authors. Cytometry Part A published by Wiley Periodicals, Inc. on behalf of International Society for Advancement of Cytometry.


Asunto(s)
Trampas Extracelulares/metabolismo , Citometría de Flujo/métodos , Técnica del Anticuerpo Fluorescente/métodos , Microscopía Fluorescente/métodos , Neutrófilos/metabolismo , Animales , Células de la Médula Ósea/metabolismo , ADN/análisis , ADN/química , Modelos Animales de Enfermedad , Trampas Extracelulares/química , Femenino , Ensayos Analíticos de Alto Rendimiento , Humanos , Lupus Eritematoso Sistémico/sangre , Lupus Eritematoso Sistémico/metabolismo , Ratones , Ratones Endogámicos C57BL , Neutrófilos/citología , Neutrófilos/efectos de los fármacos , Muerte Celular Regulada/efectos de los fármacos , Muerte Celular Regulada/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...